32 research outputs found

    Static Output Feedback: On Essential Feasible Information Patterns

    Full text link
    In this paper, for linear time-invariant plants, where a collection of possible inputs and outputs are known a priori, we address the problem of determining the communication between outputs and inputs, i.e., information patterns, such that desired control objectives of the closed-loop system (for instance, stabilizability) through static output feedback may be ensured. We address this problem in the structural system theoretic context. To this end, given a specified structural pattern (locations of zeros/non-zeros) of the plant matrices, we introduce the concept of essential information patterns, i.e., communication patterns between outputs and inputs that satisfy the following conditions: (i) ensure arbitrary spectrum assignment of the closed-loop system, using static output feedback constrained to the information pattern, for almost all possible plant instances with the specified structural pattern; and (ii) any communication failure precludes the resulting information pattern from attaining the pole placement objective in (i). Subsequently, we study the problem of determining essential information patterns. First, we provide several necessary and sufficient conditions to verify whether a specified information pattern is essential or not. Further, we show that such conditions can be verified by resorting to algorithms with polynomial complexity (in the dimensions of the state, input and output). Although such verification can be performed efficiently, it is shown that the problem of determining essential information patterns is in general NP-hard. The main results of the paper are illustrated through examples

    A Convex Approach to Sparse H∞ Analysis & Synthesis

    Get PDF
    In this paper, we propose a new robust analysis tool motivated by large-scale systems. The H∞ norm of a system measures its robustness by quantifying the worst-case behavior of a system perturbed by a unit-energy disturbance. However, the disturbance that induces such worst-case behavior requires perfect coordination among all disturbance channels. Given that many systems of interest, such as the power grid, the internet and automated vehicle platoons, are large-scale and spatially distributed, such coordination may not be possible, and hence the H∞ norm, used as a measure of robustness, may be too conservative. We therefore propose a cardinality constrained variant of the H∞ norm in which an adversarial disturbance can use only a limited number of channels. As this problem is inherently combinatorial, we present a semidefinite programming (SDP) relaxation based on the ℓ_1 norm that yields an upper bound on the cardinality constrained robustness problem. We further propose a simple rounding heuristic based on the optimal solution of our SDP relaxation, which provides a corresponding lower bound. Motivated by privacy in large-scale systems, we also extend these relaxations to computing the minimum gain of a system subject to a limited number of inputs. Finally, we also present a SDP based optimal controller synthesis method for minimizing the SDP relaxation of our novel robustness measure. The effectiveness of our semidefinite relaxation is demonstrated through numerical examples

    System Level Synthesis

    Get PDF
    This article surveys the System Level Synthesis framework, which presents a novel perspective on constrained robust and optimal controller synthesis for linear systems. We show how SLS shifts the controller synthesis task from the design of a controller to the design of the entire closed loop system, and highlight the benefits of this approach in terms of scalability and transparency. We emphasize two particular applications of SLS, namely large-scale distributed optimal control and robust control. In the case of distributed control, we show how SLS allows for localized controllers to be computed, extending robust and optimal control methods to large-scale systems under practical and realistic assumptions. In the case of robust control, we show how SLS allows for novel design methodologies that, for the first time, quantify the degradation in performance of a robust controller due to model uncertainty -- such transparency is key in allowing robust control methods to interact, in a principled way, with modern techniques from machine learning and statistical inference. Throughout, we emphasize practical and efficient computational solutions, and demonstrate our methods on easy to understand case studies.Comment: To appear in Annual Reviews in Contro

    A System Level Approach to Controller Synthesis

    Get PDF
    Biological and advanced cyber-physical control systems often have limited, sparse, uncertain, and distributed communication and computing in addition to sensing and actuation. Fortunately, the corresponding plants and performance requirements are also sparse and structured, and this must be exploited to make constrained controller design feasible and tractable. We introduce a new “system level” (SL) approach involving three complementary SL elements. SL parameterizations (SLPs) provide an alternative to the Youla parameterization of all stabilizing controllers and the responses they achieve, and combine with SL constraints (SLCs) to parameterize the largest known class of constrained stabilizing controllers that admit a convex characterization, generalizing quadratic invariance. SLPs also lead to a generalization of detectability and stabilizability, suggesting the existence of a rich separation structure, that when combined with SLCs is naturally applicable to structurally constrained controllers and systems. We further provide a catalog of useful SLCs, most importantly including sparsity, delay, and locality constraints on both communication and computing internal to the controller, and external system performance. Finally, we formulate SL synthesis problems, which define the broadest known class of constrained optimal control problems that can be solved using convex programming
    corecore