1,319 research outputs found

    Improving Statistical Image Reconstruction for Cardiac X-ray Computed Tomography.

    Full text link
    Technological advances in CT imaging pose new challenges such as increased X-ray radiation dose and complexity of image reconstruction. Statistical image reconstruction methods use realistic models that incorporate the physics of the measurements and the statistical properties of the measurement noise, and they have potential to provide better image quality and dose reduction compared to the conventional filtered back-projection (FBP) method. However, statistical methods face several challenges that should be addressed before they can replace the FBP method universally. In this thesis, we develop various methods to overcome these challenges of statistical image reconstruction methods. Rigorous regularization design methods in Fourier domain were proposed to achieve more isotropic and uniform spatial resolution or noise properties. The design framework is general so that users can control the spatial resolution and the noise characteristics of the estimator. In addition, a regularization design method based on the hypothetical geometry concept was introduced to improve resolution or noise uniformity. Proposed designs using the new concept effectively improved the spatial resolution or noise uniformity in the reconstructed image. The hypothetical geometry idea is general enough to be applied to other scan geometries. Statistical weighting modification, based on how much each detector element affects insufficiently sampled region, was proposed to reduce the artifacts without degrading the temporal resolution within the region-of-interest (ROI). Another approach using an additional regularization term, that exploits information from the prior image, was investigated. Both methods effectively removed short-scan artifacts in the reconstructed image. We accelerated the family of ordered-subsets algorithms by introducing a double surrogate so that faster convergence speed can be achieved. Furthermore, we present a variable splitting based algorithm for motion-compensated image reconstruction (MCIR) problem that provides faster convergence compared to the conjugate gradient (CG) method. A sinogram-based motion estimation method that does not require any additional measurements other than the short-scan amount of data was introduced to provide decent initial estimates for the joint estimation. Proposed methods were evaluated using simulation and real patient data, and showed promising results for solving each challenge. Some of these methods can be combined to generate more complete solutions for CT imaging.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110319/1/janghcho_1.pd

    Spatio-temporal wavelet regularization for parallel MRI reconstruction: application to functional MRI

    Get PDF
    Parallel MRI is a fast imaging technique that enables the acquisition of highly resolved images in space or/and in time. The performance of parallel imaging strongly depends on the reconstruction algorithm, which can proceed either in the original k-space (GRAPPA, SMASH) or in the image domain (SENSE-like methods). To improve the performance of the widely used SENSE algorithm, 2D- or slice-specific regularization in the wavelet domain has been deeply investigated. In this paper, we extend this approach using 3D-wavelet representations in order to handle all slices together and address reconstruction artifacts which propagate across adjacent slices. The gain induced by such extension (3D-Unconstrained Wavelet Regularized -SENSE: 3D-UWR-SENSE) is validated on anatomical image reconstruction where no temporal acquisition is considered. Another important extension accounts for temporal correlations that exist between successive scans in functional MRI (fMRI). In addition to the case of 2D+t acquisition schemes addressed by some other methods like kt-FOCUSS, our approach allows us to deal with 3D+t acquisition schemes which are widely used in neuroimaging. The resulting 3D-UWR-SENSE and 4D-UWR-SENSE reconstruction schemes are fully unsupervised in the sense that all regularization parameters are estimated in the maximum likelihood sense on a reference scan. The gain induced by such extensions is illustrated on both anatomical and functional image reconstruction, and also measured in terms of statistical sensitivity for the 4D-UWR-SENSE approach during a fast event-related fMRI protocol. Our 4D-UWR-SENSE algorithm outperforms the SENSE reconstruction at the subject and group levels (15 subjects) for different contrasts of interest (eg, motor or computation tasks) and using different parallel acceleration factors (R=2 and R=4) on 2x2x3mm3 EPI images.Comment: arXiv admin note: substantial text overlap with arXiv:1103.353
    • …
    corecore