152,894 research outputs found

    Impact of regularization on Spectral Clustering

    Full text link
    The performance of spectral clustering can be considerably improved via regularization, as demonstrated empirically in Amini et. al (2012). Here, we provide an attempt at quantifying this improvement through theoretical analysis. Under the stochastic block model (SBM), and its extensions, previous results on spectral clustering relied on the minimum degree of the graph being sufficiently large for its good performance. By examining the scenario where the regularization parameter τ\tau is large we show that the minimum degree assumption can potentially be removed. As a special case, for an SBM with two blocks, the results require the maximum degree to be large (grow faster than logn\log n) as opposed to the minimum degree. More importantly, we show the usefulness of regularization in situations where not all nodes belong to well-defined clusters. Our results rely on a `bias-variance'-like trade-off that arises from understanding the concentration of the sample Laplacian and the eigen gap as a function of the regularization parameter. As a byproduct of our bounds, we propose a data-driven technique \textit{DKest} (standing for estimated Davis-Kahan bounds) for choosing the regularization parameter. This technique is shown to work well through simulations and on a real data set.Comment: 37 page

    Oriented tensor reconstruction: tracing neural pathways from diffusion tensor MRI

    Get PDF
    In this paper we develop a new technique for tracing anatomical fibers from 3D tensor fields. The technique extracts salient tensor features using a local regularization technique that allows the algorithm to cross noisy regions and bridge gaps in the data. We applied the method to human brain DT-MRI data and recovered identifiable anatomical structures that correspond to the white matter brain-fiber pathways. The images in this paper are derived from a dataset having 121x88x60 resolution. We were able to recover fibers with less than the voxel size resolution by applying the regularization technique, i.e., using a priori assumptions about fiber smoothness. The regularization procedure is done through a moving least squares filter directly incorporated in the tracing algorithm
    corecore