24,625 research outputs found

    Doing-it-All with Bounded Work and Communication

    Get PDF
    We consider the Do-All problem, where pp cooperating processors need to complete tt similar and independent tasks in an adversarial setting. Here we deal with a synchronous message passing system with processors that are subject to crash failures. Efficiency of algorithms in this setting is measured in terms of work complexity (also known as total available processor steps) and communication complexity (total number of point-to-point messages). When work and communication are considered to be comparable resources, then the overall efficiency is meaningfully expressed in terms of effort defined as work + communication. We develop and analyze a constructive algorithm that has work O(t+plogp(plogp+tlogt))O( t + p \log p\, (\sqrt{p\log p}+\sqrt{t\log t}\, ) ) and a nonconstructive algorithm that has work O(t+plog2p)O(t +p \log^2 p). The latter result is close to the lower bound Ω(t+plogp/loglogp)\Omega(t + p \log p/ \log \log p) on work. The effort of each of these algorithms is proportional to its work when the number of crashes is bounded above by cpc\,p, for some positive constant c<1c < 1. We also present a nonconstructive algorithm that has effort O(t+p1.77)O(t + p ^{1.77})

    Highly parallel sparse Cholesky factorization

    Get PDF
    Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms

    Minimizing Communication for Eigenproblems and the Singular Value Decomposition

    Full text link
    Algorithms have two costs: arithmetic and communication. The latter represents the cost of moving data, either between levels of a memory hierarchy, or between processors over a network. Communication often dominates arithmetic and represents a rapidly increasing proportion of the total cost, so we seek algorithms that minimize communication. In \cite{BDHS10} lower bounds were presented on the amount of communication required for essentially all O(n3)O(n^3)-like algorithms for linear algebra, including eigenvalue problems and the SVD. Conventional algorithms, including those currently implemented in (Sca)LAPACK, perform asymptotically more communication than these lower bounds require. In this paper we present parallel and sequential eigenvalue algorithms (for pencils, nonsymmetric matrices, and symmetric matrices) and SVD algorithms that do attain these lower bounds, and analyze their convergence and communication costs.Comment: 43 pages, 11 figure
    corecore