1,814,990 research outputs found
Enumerating topological -configurations
An -configuration is a set of points and lines in the
projective plane such that their point-line incidence graph is -regular. The
configuration is geometric, topological, or combinatorial depending on whether
lines are considered to be straight lines, pseudolines, or just combinatorial
lines. We provide an algorithm for generating, for given and , all
topological -configurations up to combinatorial isomorphism, without
enumerating first all combinatorial -configurations. We apply this
algorithm to confirm efficiently a former result on topological
-configurations, from which we obtain a new geometric
-configuration. Preliminary results on -configurations are also
briefly reported.Comment: 18 pages, 11 figure
The nonexistence of regular near octagons with parameters (s, t, t(2), t(3)) = (2,24,0,8)
Let S be a regular near octagon with s + 1 = 3 points per line, let t + 1 denote the constant number of lines through a given point of S and for every two points x and y at distance i is an element of {2, 3} from each other, let t(i) + 1 denote the constant number of lines through y containing a (necessarily unique) point at distance i - 1 from x. It is known, using algebraic combinatorial techniques, that (t(2), t(3), t) must be equal to either (0, 0, 1), (0, 0, 4), (0, 3, 4), (0, 8, 24), (1, 2, 3), (2, 6, 14) or (4, 20, 84). For all but one of these cases, there is a unique example of a regular near octagon known. In this paper, we deal with the existence question for the remaining case. We prove that no regular near octagons with parameters (s, t, t(2), t(3)) = (2, 24, 0, 8) can exist
A note on general epidemic region for infinite regular graphs
We study the contagion game with the bilingual option on infinite regular
graphs introduced and modeled mathematically in [N. Immorlica et al. (2007)].
In the reference, Immorlica et al. studied conditions for an innovation to
become epidemic over infinite regular trees, the grid, and the infinite
thick-lines in terms of payoff enhancement and cost of the bilingual option. We
improved their results by showing that the class of infinite regular trees make
an innovation least advantageous to become epidemic considering the whole class
of infinite regular graphs. Moreover, we show that any infinite
-regular graph containing the infinite -tree structure is also
least advantageous to be epidemic. Also, we construct an infinite family of
infinite -regular graphs (including the thick -line) that is
the most advantageous to be epidemic as known so far
Distance-regular Cayley graphs with small valency
We consider the problem of which distance-regular graphs with small valency
are Cayley graphs. We determine the distance-regular Cayley graphs with valency
at most , the Cayley graphs among the distance-regular graphs with known
putative intersection arrays for valency , and the Cayley graphs among all
distance-regular graphs with girth and valency or . We obtain that
the incidence graphs of Desarguesian affine planes minus a parallel class of
lines are Cayley graphs. We show that the incidence graphs of the known
generalized hexagons are not Cayley graphs, and neither are some other
distance-regular graphs that come from small generalized quadrangles or
hexagons. Among some ``exceptional'' distance-regular graphs with small
valency, we find that the Armanios-Wells graph and the Klein graph are Cayley
graphs.Comment: 19 pages, 4 table
- …
