1,814,990 research outputs found

    Enumerating topological (nk)(n_k)-configurations

    Full text link
    An (nk)(n_k)-configuration is a set of nn points and nn lines in the projective plane such that their point-line incidence graph is kk-regular. The configuration is geometric, topological, or combinatorial depending on whether lines are considered to be straight lines, pseudolines, or just combinatorial lines. We provide an algorithm for generating, for given nn and kk, all topological (nk)(n_k)-configurations up to combinatorial isomorphism, without enumerating first all combinatorial (nk)(n_k)-configurations. We apply this algorithm to confirm efficiently a former result on topological (184)(18_4)-configurations, from which we obtain a new geometric (184)(18_4)-configuration. Preliminary results on (194)(19_4)-configurations are also briefly reported.Comment: 18 pages, 11 figure

    The nonexistence of regular near octagons with parameters (s, t, t(2), t(3)) = (2,24,0,8)

    Get PDF
    Let S be a regular near octagon with s + 1 = 3 points per line, let t + 1 denote the constant number of lines through a given point of S and for every two points x and y at distance i is an element of {2, 3} from each other, let t(i) + 1 denote the constant number of lines through y containing a (necessarily unique) point at distance i - 1 from x. It is known, using algebraic combinatorial techniques, that (t(2), t(3), t) must be equal to either (0, 0, 1), (0, 0, 4), (0, 3, 4), (0, 8, 24), (1, 2, 3), (2, 6, 14) or (4, 20, 84). For all but one of these cases, there is a unique example of a regular near octagon known. In this paper, we deal with the existence question for the remaining case. We prove that no regular near octagons with parameters (s, t, t(2), t(3)) = (2, 24, 0, 8) can exist

    A note on general epidemic region for infinite regular graphs

    Full text link
    We study the contagion game with the bilingual option on infinite regular graphs introduced and modeled mathematically in [N. Immorlica et al. (2007)]. In the reference, Immorlica et al. studied conditions for an innovation to become epidemic over infinite regular trees, the grid, and the infinite thick-lines in terms of payoff enhancement and cost of the bilingual option. We improved their results by showing that the class of infinite regular trees make an innovation least advantageous to become epidemic considering the whole class of infinite regular graphs. Moreover, we show that any infinite Δ\Delta-regular graph containing the infinite Δ\Delta-tree structure is also least advantageous to be epidemic. Also, we construct an infinite family of infinite Δ\Delta-regular graphs (including the thick Δ\Delta-line) that is the most advantageous to be epidemic as known so far

    Distance-regular Cayley graphs with small valency

    Full text link
    We consider the problem of which distance-regular graphs with small valency are Cayley graphs. We determine the distance-regular Cayley graphs with valency at most 44, the Cayley graphs among the distance-regular graphs with known putative intersection arrays for valency 55, and the Cayley graphs among all distance-regular graphs with girth 33 and valency 66 or 77. We obtain that the incidence graphs of Desarguesian affine planes minus a parallel class of lines are Cayley graphs. We show that the incidence graphs of the known generalized hexagons are not Cayley graphs, and neither are some other distance-regular graphs that come from small generalized quadrangles or hexagons. Among some ``exceptional'' distance-regular graphs with small valency, we find that the Armanios-Wells graph and the Klein graph are Cayley graphs.Comment: 19 pages, 4 table
    corecore