2,556,287 research outputs found

    The Palindrome Concept and Its Applications to Prime Numbers

    Get PDF
    This article originates from a proposal by M. L. Perez of American Research Press to carry out a study on Smarandache generalized palindromes [1]. The prime numbers were chosen as a rst set of numbers to apply the development of ideas and computer programs on. The study begins by exploring regular prime number palindromes. To continue the study it proved useful to introduce a new concept, that of extended palindromes with the property that the union of regular palindromes and extended palindromes form the set of Smarandache generalized palindromes. An interesting observation is proved in the article, namely that the only regular prime number palindrome with an even number of digits is 11

    Width and size of regular resolution proofs

    Full text link
    This paper discusses the topic of the minimum width of a regular resolution refutation of a set of clauses. The main result shows that there are examples having small regular resolution refutations, for which any regular refutation must contain a large clause. This forms a contrast with corresponding results for general resolution refutations.Comment: The article was reformatted using the style file for Logical Methods in Computer Scienc

    Degree-regular triangulations of torus and Klein bottle

    Full text link
    A triangulation of a connected closed surface is called weakly regular if the action of its automorphism group on its vertices is transitive. A triangulation of a connected closed surface is called degree-regular if each of its vertices have the same degree. Clearly, a weakly regular triangulation is degree-regular. In 1999, Lutz has classified all the weakly regular triangulations on at most 15 vertices. In 2001, Datta and Nilakantan have classified all the degree-regular triangulations of closed surfaces on at most 11 vertices. In this article, we have proved that any degree-regular triangulation of the torus is weakly regular. We have shown that there exists an nn-vertex degree-regular triangulation of the Klein bottle if and only if nn is a composite number 9\geq 9. We have constructed two distinct nn-vertex weakly regular triangulations of the torus for each n12n \geq 12 and a (4m+2)(4m + 2)-vertex weakly regular triangulation of the Klein bottle for each m2m \geq 2. For 12n1512 \leq n \leq 15, we have classified all the nn-vertex degree-regular triangulations of the torus and the Klein bottle. There are exactly 19 such triangulations, 12 of which are triangulations of the torus and remaining 7 are triangulations of the Klein bottle. Among the last 7, only one is weakly regular.Comment: Revised version, 26 pages, To appear in Proceedings of Indian Academy of Sciences (Math. Sci.

    The Geometry of Warped Product Singularities

    Full text link
    In this article the degenerate warped products of singular semi-Riemannian manifolds are studied. They were used recently by the author to handle singularities occurring in General Relativity, in black holes and at the big-bang. One main result presented here is that a degenerate warped product of semi-regular semi-Riemannian manifolds with the warping function satisfying a certain condition is a semi-regular semi-Riemannian manifold. The connection and the Riemann curvature of the warped product are expressed in terms of those of the factor manifolds. Examples of singular semi-Riemannian manifolds which are semi-regular are constructed as warped products. Applications include cosmological models and black holes solutions with semi-regular singularities. Such singularities are compatible with a certain reformulation of the Einstein equation, which in addition holds at semi-regular singularities too.Comment: 14 page

    Degree-regular triangulations of the double-torus

    Full text link
    A connected combinatorial 2-manifold is called degree-regular if each of its vertices have the same degree. A connected combinatorial 2-manifold is called weakly regular if it has a vertex-transitive automorphism group. Clearly, a weakly regular combinatorial 2-manifold is degree-regular and a degree-regular combinatorial 2-manifold of Euler characteristic - 2 must contain 12 vertices. In 1982, McMullen et al. constructed a 12-vertex geometrically realized triangulation of the double-torus in \RR^3. As an abstract simplicial complex, this triangulation is a weakly regular combinatorial 2-manifold. In 1999, Lutz showed that there are exactly three weakly regular orientable combinatorial 2-manifolds of Euler characteristic - 2. In this article, we classify all the orientable degree-regular combinatorial 2-manifolds of Euler characteristic - 2. There are exactly six such combinatorial 2-manifolds. This classifies all the orientable equivelar polyhedral maps of Euler characteristic - 2.Comment: 13 pages. To appear in `Forum Mathematicum
    corecore