8,218 research outputs found

    Interactive design exploration for constrained meshes

    Get PDF
    In architectural design, surface shapes are commonly subject to geometric constraints imposed by material, fabrication or assembly. Rationalization algorithms can convert a freeform design into a form feasible for production, but often require design modifications that might not comply with the design intent. In addition, they only offer limited support for exploring alternative feasible shapes, due to the high complexity of the optimization algorithm. We address these shortcomings and present a computational framework for interactive shape exploration of discrete geometric structures in the context of freeform architectural design. Our method is formulated as a mesh optimization subject to shape constraints. Our formulation can enforce soft constraints and hard constraints at the same time, and handles equality constraints and inequality constraints in a unified way. We propose a novel numerical solver that splits the optimization into a sequence of simple subproblems that can be solved efficiently and accurately. Based on this algorithm, we develop a system that allows the user to explore designs satisfying geometric constraints. Our system offers full control over the exploration process, by providing direct access to the specification of the design space. At the same time, the complexity of the underlying optimization is hidden from the user, who communicates with the system through intuitive interfaces

    The Topology ToolKit

    Full text link
    This system paper presents the Topology ToolKit (TTK), a software platform designed for topological data analysis in scientific visualization. TTK provides a unified, generic, efficient, and robust implementation of key algorithms for the topological analysis of scalar data, including: critical points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots, Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due to a tight integration with ParaView. It is also easily accessible to developers through a variety of bindings (Python, VTK/C++) for fast prototyping or through direct, dependence-free, C++, to ease integration into pre-existing complex systems. While developing TTK, we faced several algorithmic and software engineering challenges, which we document in this paper. In particular, we present an algorithm for the construction of a discrete gradient that complies to the critical points extracted in the piecewise-linear setting. This algorithm guarantees a combinatorial consistency across the topological abstractions supported by TTK, and importantly, a unified implementation of topological data simplification for multi-scale exploration and analysis. We also present a cached triangulation data structure, that supports time efficient and generic traversals, which self-adjusts its memory usage on demand for input simplicial meshes and which implicitly emulates a triangulation for regular grids with no memory overhead. Finally, we describe an original software architecture, which guarantees memory efficient and direct accesses to TTK features, while still allowing for researchers powerful and easy bindings and extensions. TTK is open source (BSD license) and its code, online documentation and video tutorials are available on TTK's website
    • …
    corecore