56,847 research outputs found

    Properties of graphs with large girth

    Get PDF
    This thesis is devoted to the analysis of a class of iterative probabilistic algorithms in regular graphs, called locally greedy algorithms, which will provide bounds for graph functions in regular graphs with large girth. This class is useful because, by conveniently setting the parameters associated with it, we may derive algorithms for some well-known graph problems, such as algorithms to find a large independent set, a large induced forest, or even a small dominating set in an input graph G. The name ``locally greedy" comes from the fact that, in an algorithm of this class, the probability associated with the random selection of a vertex v is determined by the current state of the vertices within some fixed distance of v. Given r > 2 and an r-regular graph G, we determine the expected performance of a locally greedy algorithm in G, depending on the girth g of the input and on the degree r of its vertices. When the girth of the graph is sufficiently large, this analysis leads to new lower bounds on the independence number of G and on the maximum number of vertices in an induced forest in G, which, in both cases, improve the bounds previously known. It also implies bounds on the same functions in graphs with large girth and maximum degree r and in random regular graphs. As a matter of fact, the asymptotic lower bounds on the cardinality of a maximum induced forest in a random regular graph improve earlier bounds, while, for independent sets, our bounds coincide with asymptotic lower bounds first obtained by Wormald. Our result provides an alternative proof of these bounds which avoids sharp concentration arguments. The main contribution of this work lies in the method presented rather than in these particular new bounds. This method allows us, in some sense, to directly analyse prioritised algorithms in regular graphs, so that the class of locally greedy algorithms, or slight modifications thereof, may be applied to a wider range of problems in regular graphs with large girth

    Digraph Complexity Measures and Applications in Formal Language Theory

    Full text link
    We investigate structural complexity measures on digraphs, in particular the cycle rank. This concept is intimately related to a classical topic in formal language theory, namely the star height of regular languages. We explore this connection, and obtain several new algorithmic insights regarding both cycle rank and star height. Among other results, we show that computing the cycle rank is NP-complete, even for sparse digraphs of maximum outdegree 2. Notwithstanding, we provide both a polynomial-time approximation algorithm and an exponential-time exact algorithm for this problem. The former algorithm yields an O((log n)^(3/2))- approximation in polynomial time, whereas the latter yields the optimum solution, and runs in time and space O*(1.9129^n) on digraphs of maximum outdegree at most two. Regarding the star height problem, we identify a subclass of the regular languages for which we can precisely determine the computational complexity of the star height problem. Namely, the star height problem for bideterministic languages is NP-complete, and this holds already for binary alphabets. Then we translate the algorithmic results concerning cycle rank to the bideterministic star height problem, thus giving a polynomial-time approximation as well as a reasonably fast exact exponential algorithm for bideterministic star height.Comment: 19 pages, 1 figur

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some F∈FF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with χ(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some F∈FF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all k≥k0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure
    • …
    corecore