3,902 research outputs found

    An optimal experimental design perspective on redial basis function regression

    Get PDF
    This paper provides a new look at radial basis function regression that reveals striking similarities with the traditional optimal experimental design framework. We show theoreti- cally and computationally that the so-called relevant vectors derived through the relevance vector machine (RVM) and corresponding to the centers of the radial basis function net- work, are very similar and often identical to the support points obtained through various optimal experimental design criteria like D-optimality. This allows us to provide a sta- tistical meaning to the relevant centers in the context of radial basis function regression, but also opens the door to a variety of ways of approach optimal experimental design in multivariate settings

    A Distributed Frank-Wolfe Algorithm for Communication-Efficient Sparse Learning

    Full text link
    Learning sparse combinations is a frequent theme in machine learning. In this paper, we study its associated optimization problem in the distributed setting where the elements to be combined are not centrally located but spread over a network. We address the key challenges of balancing communication costs and optimization errors. To this end, we propose a distributed Frank-Wolfe (dFW) algorithm. We obtain theoretical guarantees on the optimization error ϵ\epsilon and communication cost that do not depend on the total number of combining elements. We further show that the communication cost of dFW is optimal by deriving a lower-bound on the communication cost required to construct an ϵ\epsilon-approximate solution. We validate our theoretical analysis with empirical studies on synthetic and real-world data, which demonstrate that dFW outperforms both baselines and competing methods. We also study the performance of dFW when the conditions of our analysis are relaxed, and show that dFW is fairly robust.Comment: Extended version of the SIAM Data Mining 2015 pape

    Sharp Oracle Inequalities for Aggregation of Affine Estimators

    Get PDF
    We consider the problem of combining a (possibly uncountably infinite) set of affine estimators in non-parametric regression model with heteroscedastic Gaussian noise. Focusing on the exponentially weighted aggregate, we prove a PAC-Bayesian type inequality that leads to sharp oracle inequalities in discrete but also in continuous settings. The framework is general enough to cover the combinations of various procedures such as least square regression, kernel ridge regression, shrinking estimators and many other estimators used in the literature on statistical inverse problems. As a consequence, we show that the proposed aggregate provides an adaptive estimator in the exact minimax sense without neither discretizing the range of tuning parameters nor splitting the set of observations. We also illustrate numerically the good performance achieved by the exponentially weighted aggregate
    corecore