558 research outputs found

    Expectile Asymptotics

    Full text link
    We discuss in detail the asymptotic distribution of sample expectiles. First, we show uniform consistency under the assumption of a finite mean. In case of a finite second moment, we show that for expectiles other then the mean, only the additional assumption of continuity of the distribution function at the expectile implies asymptotic normality, otherwise, the limit is non-normal. For a continuous distribution function we show the uniform central limit theorem for the expectile process. If, in contrast, the distribution is heavy-tailed, and contained in the domain of attraction of a stable law with 1<α<21 < \alpha < 2, then we show that the expectile is also asymptotically stable distributed. Our findings are illustrated in a simulation section

    Multivariate Geometric Expectiles

    Full text link
    A generalization of expectiles for d-dimensional multivariate distribution functions is introduced. The resulting geometric expectiles are unique solutions to a convex risk minimization problem and are given by d-dimensional vectors. They are well behaved under common data transformations and the corresponding sample version is shown to be a consistent estimator. We exemplify their usage as risk measures in a number of multivariate settings, highlighting the influence of varying margins and dependence structures

    What is the best risk measure in practice? A comparison of standard measures

    Full text link
    Expected Shortfall (ES) has been widely accepted as a risk measure that is conceptually superior to Value-at-Risk (VaR). At the same time, however, it has been criticised for issues relating to backtesting. In particular, ES has been found not to be elicitable which means that backtesting for ES is less straightforward than, e.g., backtesting for VaR. Expectiles have been suggested as potentially better alternatives to both ES and VaR. In this paper, we revisit commonly accepted desirable properties of risk measures like coherence, comonotonic additivity, robustness and elicitability. We check VaR, ES and Expectiles with regard to whether or not they enjoy these properties, with particular emphasis on Expectiles. We also consider their impact on capital allocation, an important issue in risk management. We find that, despite the caveats that apply to the estimation and backtesting of ES, it can be considered a good risk measure. As a consequence, there is no sufficient evidence to justify an all-inclusive replacement of ES by Expectiles in applications. For backtesting ES, we propose an empirical approach that consists in replacing ES by a set of four quantiles, which should allow to make use of backtesting methods for VaR. Keywords: Backtesting; capital allocation; coherence; diversification; elicitability; expected shortfall; expectile; forecasts; probability integral transform (PIT); risk measure; risk management; robustness; value-at-riskComment: 27 pages, 1 tabl

    On the Lp-quantiles for the Student t distribution

    Full text link
    L_p-quantiles represent an important class of generalised quantiles and are defined as the minimisers of an expected asymmetric power function, see Chen (1996). For p=1 and p=2 they correspond respectively to the quantiles and the expectiles. In his paper Koenker (1993) showed that the tau quantile and the tau expectile coincide for every tau in (0,1) for a class of rescaled Student t distributions with two degrees of freedom. Here, we extend this result proving that for the Student t distribution with p degrees of freedom, the tau quantile and the tau L_p-quantile coincide for every tau in (0,1) and the same holds for any affine transformation. Furthermore, we investigate the properties of L_p-quantiles and provide recursive equations for the truncated moments of the Student t distribution
    corecore