2,348 research outputs found

    A Framework for Directional and Higher-Order Reconstruction in Photoacoustic Tomography

    Get PDF
    Photoacoustic tomography is a hybrid imaging technique that combines high optical tissue contrast with high ultrasound resolution. Direct reconstruction methods such as filtered backprojection, time reversal and least squares suffer from curved line artefacts and blurring, especially in case of limited angles or strong noise. In recent years, there has been great interest in regularised iterative methods. These methods employ prior knowledge on the image to provide higher quality reconstructions. However, easy comparisons between regularisers and their properties are limited, since many tomography implementations heavily rely on the specific regulariser chosen. To overcome this bottleneck, we present a modular reconstruction framework for photoacoustic tomography. It enables easy comparisons between regularisers with different properties, e.g. nonlinear, higher-order or directional. We solve the underlying minimisation problem with an efficient first-order primal-dual algorithm. Convergence rates are optimised by choosing an operator dependent preconditioning strategy. Our reconstruction methods are tested on challenging 2D synthetic and experimental data sets. They outperform direct reconstruction approaches for strong noise levels and limited angle measurements, offering immediate benefits in terms of acquisition time and quality. This work provides a basic platform for the investigation of future advanced regularisation methods in photoacoustic tomography.Comment: submitted to "Physics in Medicine and Biology". Changes from v1 to v2: regularisation with directional wavelet has been added; new experimental tests have been include

    A framework for directional and higher-order reconstruction in photoacoustic tomography

    Get PDF
    Photoacoustic tomography is a hybrid imaging technique that combines high optical tissue contrast with high ultrasound resolution. Direct reconstruction methods such as filtered back-projection, time reversal and least squares suffer from curved line artefacts and blurring, especially in the case of limited angles or strong noise. In recent years, there has been great interest in regularised iterative methods. These methods employ prior knowledge of the image to provide higher quality reconstructions. However, easy comparisons between regularisers and their properties are limited, since many tomography implementations heavily rely on the specific regulariser chosen. To overcome this bottleneck, we present a modular reconstruction framework for photoacoustic tomography, which enables easy comparisons between regularisers with different properties, e.g. nonlinear, higher-order or directional. We solve the underlying minimisation problem with an efficient first-order primal-dual algorithm. Convergence rates are optimised by choosing an operator-dependent preconditioning strategy. A variety of reconstruction methods are tested on challenging 2D synthetic and experimental data sets. They outperform direct reconstruction approaches for strong noise levels and limited angle measurements, offering immediate benefits in terms of acquisition time and quality. This work provides a basic platform for the investigation of future advanced regularisation methods in photoacoustic tomography

    Automated Vascular Smooth Muscle Segmentation, Reconstruction, Classification and Simulation on Whole-Slide Histology

    Get PDF
    Histology of the microvasculature depicts detailed characteristics relevant to tissue perfusion. One important histologic feature is the smooth muscle component of the microvessel wall, which is responsible for controlling vessel caliber. Abnormalities can cause disease and organ failure, as seen in hypertensive retinopathy, diabetic ischemia, Alzheimer’s disease and improper cardiovascular development. However, assessments of smooth muscle cell content are conventionally performed on selected fields of view on 2D sections, which may lead to measurement bias. We have developed a software platform for automated (1) 3D vascular reconstruction, (2) detection and segmentation of muscularized microvessels, (3) classification of vascular subtypes, and (4) simulation of function through blood flow modeling. Vessels were stained for α-actin using 3,3\u27-Diaminobenzidine, assessing both normal (n=9 mice) and regenerated vasculature (n=5 at day 14, n=4 at day 28). 2D locally adaptive segmentation involved vessel detection, skeletonization, and fragment connection. 3D reconstruction was performed using our novel nucleus landmark-based registration. Arterioles and venules were categorized using supervised machine learning based on texture and morphometry. Simulation of blood flow for the normal and regenerated vasculature was performed at baseline and during demand based on the structural measures obtained from the above tools. Vessel medial area and vessel wall thickness were found to be greater in the normal vasculature as compared to the regenerated vasculature (p\u3c0.001) and a higher density of arterioles was found in the regenerated tissue (p\u3c0.05). Validation showed: a Dice coefficient of 0.88 (compared to manual) for the segmentations, a 3D reconstruction target registration error of 4 μm, and area under the receiver operator curve of 0.89 for vessel classification. We found 89% and 67% decreases in the blood flow through the network for the regenerated vasculature during increased oxygen demand as compared to the normal vasculature, respectively for 14 and 28 days post-ischemia. We developed a software platform for automated vasculature histology analysis involving 3D reconstruction, segmentation, and arteriole vs. venule classification. This advanced the knowledge of conventional histology sampling compared to whole slide analysis, the morphological and density differences in the regenerated vasculature, and the effect of the differences on blood flow and function

    A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis.

    Get PDF
    Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision) were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, paraffin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error), as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections). Accumulated error measures were lower (

    Modeling Oxygen Transport in Three-Dimensional Capillary Networks

    Get PDF
    The purpose of this thesis was to examine how the use of real 3-dimensional (3D) capillary network geometries affect models of oxygen transport to tissue. Software was developed to reconstruct microvascular geometry in 3D from intravital video. Characterization of 3D reconstructions demonstrated that capillary density, length and capillary diameter were consistent with previous findings. Using reconstructed capillary networks a strategy was devised that utilized red blood cell (RBC) supply rate (SR) as a metric for flow modeling. Applying the RBC SR based flow model on baseline and perturbed flow conditions demonstrated that RBC SR is a major determinant of oxygen delivery that is insensitive to changes in flow distribution. The resulting flow solutions were used for comparing oxygen transport in 3D networks and synthetic parallel arrays. A variety of physiological conditions were simulated and it was determined that parallel arrays resulted in oxygen transport solutions with higher mean PO2 due to homogeneous distribution of vessels in the volume. Lastly, to investigate oxygen transport in a complex pathology a model of sepsis was used to investigate how incremental perfusion loss, consumption increase and change in RBC SR affect oxygen delivery. It was shown that perfusion loss did not markedly impair oxygen delivery provided that RBC SR was maintained. These results have improved our understanding of oxygen transport to tissue in normal and diseased conditions; the use of reconstructed networks and measurements of blood flow & oxygen saturation in computer models provides different solutions than those using statistical averages and synthetic networks
    corecore