841 research outputs found

    Registration of longitudinal brain image sequences with implicit template and spatial–temporal heuristics

    Get PDF
    Accurate measurement of longitudinal changes of brain structures and functions is very important but challenging in many clinical studies. Also, across-subject comparison of longitudinal changes is critical in identifying disease-related changes. In this paper, we propose a novel method to meet these two requirements by simultaneously registering sets of longitudinal image sequences of different subjects to the common space, without assuming any explicit template. Specifically, our goal is to 1) consistently measure the longitudinal changes from a longitudinal image sequence of each subject, and 2) jointly align all image sequences of different subjects to a hidden common space. To achieve these two goals, we first introduce a set of temporal fiber bundles to explore the spatial-temporal behavior of anatomical changes in each longitudinal image sequence. Then, a probabilistic model is built upon the temporal fibers to characterize both spatial smoothness and temporal continuity. Finally, the transformation fields that connect each time-point image of each subject to the common space are simultaneously estimated by the expectation maximization (EM) approach, via the maximum a posterior (MAP) estimation of the probabilistic models. Promising results have been obtained in quantitative measurement of longitudinal brain changes, i.e., hippocampus volume changes, showing better performance than those obtained by either the pairwise or the groupwise only registration methods

    Scalable joint segmentation and registration framework for infant brain images

    Get PDF
    The first year of life is the most dynamic and perhaps the most critical phase of postnatal brain development. The ability to accurately measure structure changes is critical in early brain development study, which highly relies on the performances of image segmentation and registration techniques. However, either infant image segmentation or registration, if deployed independently, encounters much more challenges than segmentation/registration of adult brains due to dynamic appearance change with rapid brain development. In fact, image segmentation and registration of infant images can assists each other to overcome the above challenges by using the growth trajectories (i.e., temporal correspondences) learned from a large set of training subjects with complete longitudinal data. Specifically, a one-year-old image with ground-truth tissue segmentation can be first set as the reference domain. Then, to register the infant image of a new subject at earlier age, we can estimate its tissue probability maps, i.e., with sparse patch-based multi-atlas label fusion technique, where only the training images at the respective age are considered as atlases since they have similar image appearance. Next, these probability maps can be fused as a good initialization to guide the level set segmentation. Thus, image registration between the new infant image and the reference image is free of difficulty of appearance changes, by establishing correspondences upon the reasonably segmented images. Importantly, the segmentation of new infant image can be further enhanced by propagating the much more reliable label fusion heuristics at the reference domain to the corresponding location of the new infant image via the learned growth trajectories, which brings image segmentation and registration to assist each other. It is worth noting that our joint segmentation and registration framework is also flexible to handle the registration of any two infant images even with significant age gap in the first year of life, by linking their joint segmentation and registration through the reference domain. Thus, our proposed joint segmentation and registration method is scalable to various registration tasks in early brain development studies. Promising segmentation and registration results have been achieved for infant brain MR images aged from 2-week-old to 1-year-old, indicating the applicability of our method in early brain development study

    Registration of brain MR images in large-scale populations

    Get PDF
    Non-rigid image registration is fundamentally important in analyzing large-scale population of medical images, e.g., T1-weighted brain MRI data. Conventional pairwise registration methods involve only two images, as the moving subject image is deformed towards the space of the template for the maximization of their in-between similarity. The population information, however, is mostly ignored, with individual images in the population registered independently with the arbitrarily selected template. By contrast, this dissertation investigates the contributions of the entire population to image registration. First, the population can provide guidance to the pairwise registration between a certain subject and the template. If the subject and an intermediate image in the same population are similar in appearances, the subject shares a similar deformation field with the intermediate image. Thus, the guidance from the intermediate image can be beneficial to the subject, in that the pre-estimated deformation field of the intermediate image initiates the estimation of the subject deformation field when the two images are registered with the identical template. Second, all images in the population can be registered towards the common space of the population using the groupwise technique. Groupwise registration differs from the traditional design of pairwise registration in that no template is pre-determined. Instead, all images agglomerate to the common space of the population simultaneously. Moreover, the common space is revealed spontaneously during image registration, without introducing any bias towards the subsequent analyses and applications. This dissertation shows that population information can contribute to both pairwise registration and groupwise registration. In particular, by utilizing the guidance from the intermediate images in the population, the pairwise registration is more robust and accurate compared to the direct pairwise registration between the subject and the template. Also, for groupwise registration, all images in the population can be aligned more accurately in the common space, although the complexity of groupwise registration increases substantially.Doctor of Philosoph

    Longitudinal Image Registration With Temporally-Dependent Image Similarity Measure

    Get PDF
    Longitudinal imaging studies are frequently used to investigate temporal changes in brain morphology and often require spatial correspondence between images achieved through image registration. Beside morphological changes, image intensity may also change over time, for example when studying brain maturation. However, such intensity changes are not accounted for in image similarity measures for standard image registration methods. Hence, (i) local similarity measures, (ii) methods estimating intensity transformations between images, and (iii) metamorphosis approaches have been developed to either achieve robustness with respect to intensity changes or to simultaneously capture spatial and intensity changes. For these methods, longitudinal intensity changes are not explicitly modeled and images are treated as independent static samples. Here, we propose a model-based image similarity measure for longitudinal image registration that estimates a temporal model of intensity change using all available images simultaneously

    Automated Knowledge Discovery from Functional Magnetic Resonance Images using Spatial Coherence

    Get PDF
    Functional Magnetic Resonance Imaging (fMRI) has the potential to unlock many of the mysteries of the brain. Although this imaging modality is popular for brain-mapping activities, clinical applications of this technique are relatively rare. For clinical applications, classification models are more useful than the current practice of reporting loci of neural activation associated with particular disorders. Also, since the methods used to account for anatomical variations between subjects are generally imprecise, the conventional voxel-by-voxel analysis limits the types of discoveries that are possible. This work presents a classification-based framework for knowledge discovery from fMRI data. Instead of voxel-centric knowledge discovery, this framework is segment-centric, where functional segments are clumps of voxels that represent a functional unit in the brain. With simulated activation images, it is shown that this segment-based approach can be more successful for knowledge discovery than conventional voxel-based approaches. The spatial coherence principle refers to the homogeneity of behavior of spatially contiguous voxels. Auto-threshold Contrast Enhancing Iterative Clustering (ACEIC) - a new algorithm based on the spatial coherence principle is presented here for functional segmentation. With benchmark data, it is shown that the ACEIC method can achieve higher segmentation accuracy than Probabilistic Independent Component Analysis - a popular method used for fMRI data analysis. The spatial coherence principle can also be exploited for voxel-centric image-classification problems. Spatially Coherent Voxels (SCV) is a new feature selection method that uses the spatial coherence principle to eliminate features that are unlikely to be useful for classification. For a Substance Use Disorder dataset, it is demonstrated that feature selection with SCV can achieve higher classification accuracies than conventional feature selection methods

    Automatic Affine and Elastic Registration Strategies for Multi-dimensional Medical Images

    Get PDF
    Medical images have been used increasingly for diagnosis, treatment planning, monitoring disease processes, and other medical applications. A large variety of medical imaging modalities exists including CT, X-ray, MRI, Ultrasound, etc. Frequently a group of images need to be compared to one another and/or combined for research or cumulative purposes. In many medical studies, multiple images are acquired from subjects at different times or with different imaging modalities. Misalignment inevitably occurs, causing anatomical and/or functional feature shifts within the images. Computerized image registration (alignment) approaches can offer automatic and accurate image alignments without extensive user involvement and provide tools for visualizing combined images. This dissertation focuses on providing automatic image registration strategies. After a through review of existing image registration techniques, we identified two registration strategies that enhance the current field: (1) an automated rigid body and affine registration using voxel similarity measurements based on a sequential hybrid genetic algorithm, and (2) an automated deformable registration approach based upon a linear elastic finite element formulation. Both methods streamlined the registration process. They are completely automatic and require no user intervention. The proposed registration strategies were evaluated with numerous 2D and 3D MR images with a variety of tissue structures, orientations and dimensions. Multiple registration pathways were provided with guidelines for their applications. The sequential genetic algorithm mimics the pathway of an expert manually doing registration. Experiments demonstrated that the sequential genetic algorithm registration provides high alignment accuracy and is reliable for brain tissues. It avoids local minima/maxima traps of conventional optimization techniques, and does not require any preprocessing such as threshold, smoothing, segmentation, or definition of base points or edges. The elastic model was shown to be highly effective to accurately align areas of interest that are automatically extracted from the images, such as brains. Using a finite element method to get the displacement of each element node by applying a boundary mapping, this method provides an accurate image registration with excellent boundary alignment of each pair of slices and consequently align the entire volume automatically. This dissertation presented numerous volume alignments. Surface geometries were created directly from the aligned segmented images using the Multiple Material Marching Cubes algorithm. Using the proposed registration strategies, multiple subjects were aligned to a standard MRI reference, which is aligned to a segmented reference atlas. Consequently, multiple subjects are aligned to the segmented atlas and a full fMRI analysis is possible

    A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging

    Full text link

    Hierarchical unbiased graph shrinkage (HUGS): A novel groupwise registration for large data set

    Get PDF
    Normalizing all images in a large data set into a common space is a key step in many clinical and research studies, e.g., for brain development, maturation, and aging. Recently, groupwise registration has been developed for simultaneous alignment of all images without selecting a particular image as template, thus potentially avoiding bias in the registration. However, most conventional groupwise registration methods do not explore the data distribution during the image registration. Thus, their performance could be affected by large inter-subject variations in the data set under registration. To solve this potential issue, we propose to use a graph to model the distribution of all image data sitting on the image manifold, with each node representing an image and each edge representing the geodesic pathway between two nodes (or images). Then, the procedure of warping all images to their population center turns to the dynamic shrinking of the graph nodes along their graph edges until all graph nodes become close to each other. Thus, the topology of image distribution on the image manifold is always preserved during the groupwise registration. More importantly, by modeling the distribution of all images via a graph, we can potentially reduce registration error since every time each image is warped only according to its nearby images with similar structures in the graph. We have evaluated our proposed groupwise registration method on both infant and adult data sets, by also comparing with the conventional group-mean based registration and the ABSORB methods. All experimental results show that our proposed method can achieve better performance in terms of registration accuracy and robustness

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated
    • …
    corecore