6 research outputs found

    Modulo scheduling with integrated register spilling for clustered VLIW architectures

    Get PDF
    Clustering is a technique to decentralize the design of future wide issue VLIW cores and enable them to meet the technology constraints in terms of cycle time, area and power dissipation. In a clustered design, registers and functional units are grouped in clusters so that new instructions are needed to move data between them. New aggressive instruction scheduling techniques are required to minimize the negative effect of resource clustering and delays in moving data around. In this paper we present a novel software pipelining technique that performs instruction scheduling with reduced register requirements, register allocation, register spilling and inter-cluster communication in a single step. The algorithm uses limited backtracking to reconsider previously taken decisions. This backtracking provides the algorithm with additional possibilities for obtaining high throughput schedules with low spill code requirements for clustered architectures. We show that the proposed approach outperforms previously proposed techniques and that it is very scalable independently of the number of clusters, the number of communication buses and communication latency. The paper also includes an exploration of some parameters in the design of future clustered VLIW cores.Peer ReviewedPostprint (published version

    Heuristics for register-constrained software pipelining

    Get PDF
    Software Pipelining is a loop scheduling technique that extracts parallelism from loops by overlapping the execution of several consecutive iterations. There has been a significant effort to produce throughput-optimal schedules under resource constraints, and more recently to produce throughput-optimal schedules with minimum register requirements. Unfortunately even a throughput-optimal schedule with minimum register requirements is useless if it requires more registers than those available in the target machine. This paper evaluates several techniques for producing register-constrained modulo schedules: increasing the initiation interval (II) and adding spill code. We show that, in general, increasing the II performs poorly and might not converge for some loops. The paper also presents an iterative spilling mechanism that can be applied to any software pipelining technique and proposes several heuristics in order to speed-up the scheduling processPeer ReviewedPostprint (published version

    Register-Sensitive Software Pipelining

    No full text
    In this paper, we propose an integrated approach for register-sensitive software pipelining. In this approach, the heuristics proposed in the stage scheduling method of Eichenberger and Davidson [4] are integrated with the iterative scheduling method to obtain schedules with high initiation rate and low register requirements. The performance of our integrated software pipelining method was analyzed for a large number of loops taken from a variety of scientific benchmark programs. Our studies reveal that the stage scheduling heuristics facilitate better performance benefits when applied at the scheduling time, resulting in significant performance improvement over both the stage scheduling method and the slack scheduling method
    corecore