5 research outputs found

    Explanations of Black-Box Model Predictions by Contextual Importance and Utility

    Full text link
    The significant advances in autonomous systems together with an immensely wider application domain have increased the need for trustable intelligent systems. Explainable artificial intelligence is gaining considerable attention among researchers and developers to address this requirement. Although there is an increasing number of works on interpretable and transparent machine learning algorithms, they are mostly intended for the technical users. Explanations for the end-user have been neglected in many usable and practical applications. In this work, we present the Contextual Importance (CI) and Contextual Utility (CU) concepts to extract explanations that are easily understandable by experts as well as novice users. This method explains the prediction results without transforming the model into an interpretable one. We present an example of providing explanations for linear and non-linear models to demonstrate the generalizability of the method. CI and CU are numerical values that can be represented to the user in visuals and natural language form to justify actions and explain reasoning for individual instances, situations, and contexts. We show the utility of explanations in car selection example and Iris flower classification by presenting complete (i.e. the causes of an individual prediction) and contrastive explanation (i.e. contrasting instance against the instance of interest). The experimental results show the feasibility and validity of the provided explanation methods

    Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

    Get PDF
    With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis. This survey presents an overview of eXplainable Artificial Intelligence (XAI) used in deep learning-based medical image analysis. A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods. Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location. The paper concludes with an outlook of future opportunities for XAI in medical image analysis.Comment: Submitted for publication. Comments welcome by email to first autho
    corecore