2 research outputs found

    Decision-theoretic rough sets based on time-dependent loss function

    Full text link
    A fundamental notion of decision-theoretic rough sets is the concept of loss functions, which provides a powerful tool of calculating a pair of thresholds for making a decision with a minimum cost. In this paper, time-dependent loss functions which are variations of the time are of interest because such functions are frequently encountered in practical situations, we present the relationship between the pair of thresholds and loss functions satisfying time-dependent uniform distributions and normal processes in light of bayesian decision procedure. Subsequently, with the aid of bayesian decision procedure, we provide the relationship between the pair of thresholds and loss functions which are time-dependent interval sets and fuzzy numbers. Finally, we employ several examples to illustrate that how to calculate the thresholds for making a decision by using time-dependent loss functions-based decision-theoretic rough sets

    Heuristic algorithms for finding distribution reducts in probabilistic rough set model

    Full text link
    Attribute reduction is one of the most important topics in rough set theory. Heuristic attribute reduction algorithms have been presented to solve the attribute reduction problem. It is generally known that fitness functions play a key role in developing heuristic attribute reduction algorithms. The monotonicity of fitness functions can guarantee the validity of heuristic attribute reduction algorithms. In probabilistic rough set model, distribution reducts can ensure the decision rules derived from the reducts are compatible with those derived from the original decision table. However, there are few studies on developing heuristic attribute reduction algorithms for finding distribution reducts. This is partly due to the fact that there are no monotonic fitness functions that are used to design heuristic attribute reduction algorithms in probabilistic rough set model. The main objective of this paper is to develop heuristic attribute reduction algorithms for finding distribution reducts in probabilistic rough set model. For one thing, two monotonic fitness functions are constructed, from which equivalence definitions of distribution reducts can be obtained. For another, two modified monotonic fitness functions are proposed to evaluate the significance of attributes more effectively. On this basis, two heuristic attribute reduction algorithms for finding distribution reducts are developed based on addition-deletion method and deletion method. In particular, the monotonicity of fitness functions guarantees the rationality of the proposed heuristic attribute reduction algorithms. Results of experimental analysis are included to quantify the effectiveness of the proposed fitness functions and distribution reducts.Comment: 44 pages, 24 figure
    corecore