2 research outputs found

    Region Graph Based Method for Multi-Object Detection and Tracking using Depth Cameras

    Full text link
    In this paper, we propose a multi-object detection and tracking method using depth cameras. Depth maps are very noisy and obscure in object detection. We first propose a region-based method to suppress high magnitude noise which cannot be filtered using spatial filters. Second, the proposed method detect Region of Interests by temporal learning which are then tracked using weighted graph-based approach. We demonstrate the performance of the proposed method on standard depth camera datasets with and without object occlusions. Experimental results show that the proposed method is able to suppress high magnitude noise in depth maps and detect/track the objects (with and without occlusion).Comment: Accepted in IEEE Winter Conference in Computer Vision (WACV'16

    Identifying Most Walkable Direction for Navigation in an Outdoor Environment

    Full text link
    We present an approach for identifying the most walkable direction for navigation using a hand-held camera. Our approach extracts semantically rich contextual information from the scene using a custom encoder-decoder architecture for semantic segmentation and models the spatial and temporal behavior of objects in the scene using a spatio-temporal graph. The system learns to minimize a cost function over the spatial and temporal object attributes to identify the most walkable direction. We construct a new annotated navigation dataset collected using a hand-held mobile camera in an unconstrained outdoor environment, which includes challenging settings such as highly dynamic scenes, occlusion between objects, and distortions. Our system achieves an accuracy of 84% on predicting a safe direction. We also show that our custom segmentation network is both fast and accurate, achieving mIOU (mean intersection over union) scores of 81 and 44.7 on the PASCAL VOC and the PASCAL Context datasets, respectively, while running at about 21 frames per second
    corecore