187 research outputs found

    Multiple Cognitive Abilities from a Single Cortical Algorithm

    Get PDF
    Abstract ■ One strong claim made by the representational-hierarchical account of cortical function in the ventral visual stream ( VVS) is that the VVS is a functional continuum: The basic computations carried out in service of a given cognitive function, such as recognition memory or visual discrimination, might be the same at all points along the VVS. Here, we use a single-layer computational model with a fixed learning mechanism and set of parameters to simulate a variety of cognitive phenomena from different parts of the functional continuum of the VVS: recognition memory, categorization of perceptually related stimuli, perceptual learning of highly similar stimuli, and development of retinotopy and orientation selectivity. The simulation results indicate-consistent with the representational-hierarchical view-that the simple existence of different levels of representational complexity in different parts of the VVS is sufficient to drive the emergence of distinct regions that appear to be specialized for solving a particular task, when a common neurocomputational learning algorithm is assumed across all regions. Thus, our data suggest that it is not necessary to invoke computational differences to understand how different cortical regions can appear to be specialized for what are considered to be very different psychological functions.

    Memory capacity in the hippocampus

    Get PDF
    Neural assemblies in hippocampus encode positions. During rest, the hippocam- pus replays sequences of neural activity seen during awake behavior. This replay is linked to memory consolidation and mental exploration of the environment. Re- current networks can be used to model the replay of sequential activity. Multiple sequences can be stored in the synaptic connections. To achieve a high mem- ory capacity, recurrent networks require a pattern separation mechanism. Such a mechanism is global remapping, observed in place cell populations. A place cell fires at a particular position of an environment and is silent elsewhere. Multiple place cells usually cover an environment with their firing fields. Small changes in the environment or context of a behavioral task can cause global remapping, i.e. profound changes in place cell firing fields. Global remapping causes some cells to cease firing, other silent cells to gain a place field, and other place cells to move their firing field and change their peak firing rate. The effect is strong enough to make global remapping a viable pattern separation mechanism. We model two mechanisms that improve the memory capacity of recurrent net- works. The effect of inhibition on replay in a recurrent network is modeled using binary neurons and binary synapses. A mean field approximation is used to de- termine the optimal parameters for the inhibitory neuron population. Numerical simulations of the full model were carried out to verify the predictions of the mean field model. A second model analyzes a hypothesized global remapping mecha- nism, in which grid cell firing is used as feed forward input to place cells. Grid cells have multiple firing fields in the same environment, arranged in a hexagonal grid. Grid cells can be used in a model as feed forward inputs to place cells to produce place fields. In these grid-to-place cell models, shifts in the grid cell firing patterns cause remapping in the place cell population. We analyze the capacity of such a system to create sets of separated patterns, i.e. how many different spatial codes can be generated. The limiting factor are the synapses connecting grid cells to place cells. To assess their capacity, we produce different place codes in place and grid cell populations, by shuffling place field positions and shifting grid fields of grid cells. Then we use Hebbian learning to increase the synaptic weights be- tween grid and place cells for each set of grid and place code. The capacity limit is reached when synaptic interference makes it impossible to produce a place code with sufficient spatial acuity from grid cell firing. Additionally, it is desired to also maintain the place fields compact, or sparse if seen from a coding standpoint. Of course, as more environments are stored, the sparseness is lost. Interestingly, place cells lose the sparseness of their firing fields much earlier than their spatial acuity. For the sequence replay model we are able to increase capacity in a simulated recurrent network by including an inhibitory population. We show that even in this more complicated case, capacity is improved. We observe oscillations in the average activity of both excitatory and inhibitory neuron populations. The oscillations get stronger at the capacity limit. In addition, at the capacity limit, rather than observing a sudden failure of replay, we find sequences are replayed transiently for a couple of time steps before failing. Analyzing the remapping model, we find that, as we store more spatial codes in the synapses, first the sparseness of place fields is lost. Only later do we observe a decay in spatial acuity of the code. We found two ways to maintain sparse place fields while achieving a high capacity: inhibition between place cells, and partitioning the place cell population so that learning affects only a small fraction of them in each environment. We present scaling predictions that suggest that hundreds of thousands of spatial codes can be produced by this pattern separation mechanism. The effect inhibition has on the replay model is two-fold. Capacity is increased, and the graceful transition from full replay to failure allows for higher capacities when using short sequences. Additional mechanisms not explored in this model could be at work to concatenate these short sequences, or could perform more complex operations on them. The interplay of excitatory and inhibitory populations gives rise to oscillations, which are strongest at the capacity limit. The oscillation draws a picture of how a memory mechanism can cause hippocampal oscillations as observed in experiments. In the remapping model we showed that sparseness of place cell firing is constraining the capacity of this pattern separation mechanism. Grid codes outperform place codes regarding spatial acuity, as shown in Mathis et al. (2012). Our model shows that the grid-to-place transformation is not harnessing the full spatial information from the grid code in order to maintain sparse place fields. This suggests that the two codes are independent, and communication between the areas might be mostly for synchronization. High spatial acuity seems to be a specialization of the grid code, while the place code is more suitable for memory tasks. In a detailed model of hippocampal replay we show that feedback inhibition can increase the number of sequences that can be replayed. The effect of inhibition on capacity is determined using a meanfield model, and the results are verified with numerical simulations of the full network. Transient replay is found at the capacity limit, accompanied by oscillations that resemble sharp wave ripples in hippocampus. In a second model Hippocampal replay of neuronal activity is linked to memory consolidation and mental exploration. Furthermore, replay is a potential neural correlate of episodic memory. To model hippocampal sequence replay, recurrent neural networks are used. Memory capacity of such networks is of great interest to determine their biological feasibility. And additionally, any mechanism that improves capacity has explanatory power. We investigate two such mechanisms. The first mechanism to improve capacity is global, unspecific feedback inhibition for the recurrent network. In a simplified meanfield model we show that capacity is indeed improved. The second mechanism that increases memory capacity is pattern separation. In the spatial context of hippocampal place cell firing, global remapping is one way to achieve pattern separation. Changes in the environment or context of a task cause global remapping. During global remapping, place cell firing changes in unpredictable ways: cells shift their place fields, or fully cease firing, and formerly silent cells acquire place fields. Global remapping can be triggered by subtle changes in grid cells that give feed-forward inputs to hippocampal place cells. We investigate the capacity of the underlying synaptic connections, defined as the number of different environments that can be represented at a given spatial acuity. We find two essential conditions to achieve a high capacity and sparse place fields: inhibition between place cells, and partitioning the place cell population so that learning affects only a small fraction of them in each environments. We also find that sparsity of place fields is the constraining factor of the model rather than spatial acuity. Since the hippocampal place code is sparse, we conclude that the hippocampus does not fully harness the spatial information available in the grid code. The two codes of space might thus serve different purposes

    Inventing episodic memory : a theory of dorsal and ventral hippocampus

    Get PDF

    Continual Lifelong Learning with Neural Networks: A Review

    Full text link
    Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration

    Data Ontology and an Information System Realization for Web-Based Management of Image Measurements

    Get PDF
    Image acquisition, processing, and quantification of objects (morphometry) require the integration of data inputs and outputs originating from heterogeneous sources. Management of the data exchange along this workflow in a systematic manner poses several challenges, notably the description of the heterogeneous meta-data and the interoperability between the software used. The use of integrated software solutions for morphometry and management of imaging data in combination with ontologies can reduce meta-data loss and greatly facilitate subsequent data analysis. This paper presents an integrated information system, called LabIS. The system has the objectives to automate (i) the process of storage, annotation, and querying of image measurements and (ii) to provide means for data sharing with third party applications consuming measurement data using open standard communication protocols. LabIS implements 3-tier architecture with a relational database back-end and an application logic middle tier realizing web-based user interface for reporting and annotation and a web-service communication layer. The image processing and morphometry functionality is backed by interoperability with ImageJ, a public domain image processing software, via integrated clients. Instrumental for the latter feat was the construction of a data ontology representing the common measurement data model. LabIS supports user profiling and can store arbitrary types of measurements, regions of interest, calibrations, and ImageJ settings. Interpretation of the stored measurements is facilitated by atlas mapping and ontology-based markup. The system can be used as an experimental workflow management tool allowing for description and reporting of the performed experiments. LabIS can be also used as a measurements repository that can be transparently accessed by computational environments, such as Matlab. Finally, the system can be used as a data sharing tool

    Analytical CPG model driven by limb velocity input generates accurate temporal locomotor dynamics

    Get PDF
    The ability of vertebrates to generate rhythm within their spinal neural networks is essential for walking, running, and other rhythmic behaviors. The central pattern generator (CPG) network responsible for these behaviors is well-characterized with experimental and theoretical studies, and it can be formulated as a nonlinear dynam- ical system. The underlying mechanism responsible for locomotor behavior can be expressed as the process of leaky integration with resetting states generating appropriate phases for changing body velocity. The low-dimensional input to the CPG model generates the bilateral pattern of swing and stance modulation for each limb and is consistent with the desired limb speed as the input command. To test the minimal configuration of required parameters for this model, we reduced the system of equations representing CPG for a single limb and provided the analytical solution with two complementary methods. The analytical and empirical cycle durations were similar (R2 = 0.99) for the full range of walking speeds. The structure of solution is consistent with the use of limb speed as the input domain for the CPG network. Moreover, the reciprocal interaction between two leaky integration processes representing a CPG for two limbs was sufficient to capture fundamental experimental dynamics associated with the control of heading direction. This analysis provides further support for the embedded velocity or limb speed representation within spinal neural pathways involved in rhythm generation
    corecore