11 research outputs found

    Perfectly contractile graphs and quadratic toric rings

    Full text link
    Perfect graphs form one of the distinguished classes of finite simple graphs. In 2006, Chudnovsky, Robertson, Saymour and Thomas proved that a graph is perfect if and only if it has no odd holes and no odd antiholes as induced subgraphs, which was conjectured by Berge. We consider the class A{\mathcal A} of graphs that have no odd holes, no antiholes and no odd stretchers as induced subgraphs. In particular, every graph belonging to A{\mathcal A} is perfect. Everett and Reed conjectured that a graph belongs to A{\mathcal A} if and only if it is perfectly contractile. In the present paper, we discuss graphs belonging to A{\mathcal A} from a viewpoint of commutative algebra. In fact, we conjecture that a perfect graph GG belongs to A{\mathcal A} if and only if the toric ideal of the stable set polytope of GG is generated by quadratic binomials. Especially, we show that this conjecture is true for Meyniel graphs, perfectly orderable graphs, and clique separable graphs, which are perfectly contractile graphs.Comment: 10 page
    corecore