102,367 research outputs found

    National Rugby League athletes and tendon tap reflex assessment: A matched cohort clinical study

    Get PDF
    BACKGROUND: Limited research suggests elite athletes may differ from non-athletes in clinical tendon tap reflex responses. METHODS: In this matched cohort study, 25 elite rugby league athletes were compared with 29 non-athletes to examine differences in tendon reflex responses. Relationships between reflex responses and lengths of players’ careers were also examined. Biceps, triceps, patellar and Achilles tendon reflexes were clinically assessed. RESULTS: Right and left reflexes were well correlated for each tendon (r(S) = 0.7–0.9). The elite rugby league athletes exhibited significantly weaker reflex responses than non-athletes in all four tendons (p < 0.005). Biceps reflexes demonstrated the largest difference and Achilles reflexes the smallest difference. Moderate negative correlations (r(S) = −0.3–0.6) were observed between reflex responses and lengths of players’ careers. CONCLUSIONS: Future research is required to further elucidate mechanisms resulting in the observed differences in tendon reflexes and to ensure clinical tendon tap examinations and findings can be interpreted appropriately in this athletic population

    Responses to stimulation of coronary and carotid baroreceptors and the coronary chemoreflex at different ventricular distending pressures in anaesthetised dogs

    Get PDF
    Stimulation of left ventricular mechanoreceptors was believed not only to exert important effects on the circulation, but also to influence the responses to baroreceptor reflexes. However, most previous work is flawed due to inadequate localisation of stimuli to specific reflexogenic areas. In this study, we applied a discrete stimulus to left ventricular mechanoreceptors to examine other reflexes known to effect the circulation. Dogs were anaesthetised, artificially ventilated and a cardiopulmonary bypass established. The pressure distending the left ventricle was controlled through an apical cannula with the aortic valve obstructed by a balloon. Changes in ventricular systolic and end-diastolic pressure had only a small effect on vascular resistance, assessed as perfusion pressure in the systemic circulation (flow constant). Responses to changes in carotid or coronary pressure or to stimulation of chemosensitive afferents by injecting veratridine into the coronary circulation were always much larger. Responses to stimulation of these reflexes were little affected by the level of stimulus to the ventricular receptors. These experiments confirm that responses to stimulation of ventricular mechanoreceptors are very small and show that they remain small at different levels of input to other baroreceptive regions. There was no evidence of interaction between ventricular mechanoreceptor reflexes and carotid or coronary baroreceptors or ventricular chemosensitive reflexes

    On the notion of motor primitives in humans and robots

    Get PDF
    This article reviews two reflexive motor patterns in humans: Primitive reflexes and motor primitives. Both terms coexist in the literature of motor development and motor control, yet they are not synonyms. While primitive reflexes are a part of the temporary motor repertoire in early ontogeny, motor primitives refer to sets of motor patterns that are considered basic units of voluntary motor control thought to be present throughout the life-span. The article provides an overview of the anatomy and neurophysiology of human reflexive motor patterns to elucidate that both concepts are rooted in architecture of the spinal cord. I will advocate that an understanding of the human motor system that encompasses both primitive reflexes and motor primitives as well as the interaction with supraspinal motor centers will lead to an appreciation of the richness of the human motor repertoire, which in turn seems imperative for designing epigenetic robots and highly adaptable human machine interfaces

    Antagonistic and Synergistic Activation of Cardiovascular Vagal and Sympathetic Motor Outflows in Trigeminal Reflexes

    Get PDF
    The trigeminal nerve and heart are strongly related through somato-autonomic nervous reflexes that induce rapid changes in cardiovascular function. Several trigeminal reflexes have been described, but the diving and trigeminocardiac reflexes are the most studied. The heart is a target organ dually innervated by the sympathetic and parasympathetic systems. Thus, how cardiac function is regulated during the trigeminal reflexes is the result of the combination of an increased parasympathetic response and increased, decreased, or unaltered sympathetic activity. Various hemodynamic changes occur as a consequence of these alterations in autonomic tone. Often in the oxygen-conserving physiological reflexes such as the diving reflex, sympathetic/parasympathetic co-activation reduces the heart rate and either maintains or increases blood pressure. Conversely, in the trigeminocardiac reflex, bradycardia and hypotension due to parasympathetic activation and sympathetic inactivation tend to be observed. These sudden cardiac innervation disturbances may promote the generation of arrhythmias or myocardial ischemia during surgeries in the trigeminal territory. However, the function and mechanisms involved in the trigeminal reflexes remain to be fully elucidated. The current review provides a brief update and analysis of the features of these reflexes, with special focus on how the autonomic nervous system interacts with cardiovascular function.Fil: Buchholz, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular. Instituto de Bioquímica y Medicina Molecular; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Patología; ArgentinaFil: Kelly, Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular. Instituto de Bioquímica y Medicina Molecular; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Patología; ArgentinaFil: Bernatene, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular. Instituto de Bioquímica y Medicina Molecular; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Patología; ArgentinaFil: Méndez Diodati, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular. Instituto de Bioquímica y Medicina Molecular; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Patología; ArgentinaFil: Gelpi, Ricardo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de Bioquímica y Medicina Molecular. Instituto de Bioquímica y Medicina Molecular; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Patología; Argentin

    Flexor Reflex Decreases during Sympathetic Stimulation in Chronic Human Spinal Cord Injury

    Get PDF
    A better understanding of autonomic influence on motor reflex pathways in spinal cord injury is important to the clinical management of autonomic dysreflexia and spasticity in spinal cord injured patients. The purpose of this study was to examine the modulation of flexor reflex windup during episodes of induced sympathetic activity in chronic human spinal cord injury (SCI). We simultaneously measured peripheral vascular conductance and the windup of the flexor reflex in response to conditioning stimuli of electrocutaneous stimulation to the opposite leg and bladder percussion. Flexor reflexes were quantified using torque measurements of the response to a noxious electrical stimulus applied to the skin of the medial arch of the foot. Both bladder percussion and skin conditioning stimuli produced a reduction (43–67%) in the ankle and hip flexor torques (p \u3c 0.05) of the flexor reflex. This reduction was accompanied by a simultaneous reduction in vascular conductance, measured using venous plethysmography, with a time course that matched the flexor reflex depression. While there was an overall attenuation of the flexor reflex, windup of the flexor reflex to repeated stimuli was maintained during periods of increased sympathetic activity. This paradoxical depression of flexor reflexes and minimal effect on windup is consistent with inhibition of afferent feedback within the superficial dorsal horn. The results of this study bring attention to the possible interaction of motor and sympathetic reflexes in SCI above and below the T5 spinal level, and have implications for clinicians in spasticity management and for researchers investigating motor reflexes post SCI

    In Search of Intuition

    Get PDF
    What are intuitions? Stereotypical examples may suggest that they are the results of common intellectual reflexes. But some intuitions defy the stereotype: there are hard-won intuitions that take d..

    Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents

    Get PDF
    During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discusse

    Vestibular reflexes of otolith origin

    Get PDF
    The vestibular system and its role in the maintenance of posture and in motion sickness is investigated using cats as experimental subjects. The assumption is that better understanding of the physiology of vestibular pathways is not only of intrinsic value, but will help to explain and eventually alleviate the disturbances caused by vestibular malfunction, or by exposure to an unusual environment such as space. The first project deals with the influence on the spinal cord of stimulation of the vestibular labyrinth, particularly the otoliths. A second was concerned with the properties and neural basis of the tonic neck reflex. These two projects are related, because vestibulospinal and tonic neck reflexes interact in the maintenance of normal posture. The third project began with an interest in mechanisms of motion sickness, and eventually shifted to a study of central control of respiratory muscles involved in vomiting

    Spatial organization of visuomotor reflexes in Drosophila

    Get PDF
    In most animals, the visual system plays a central role in locomotor guidance. Here, we examined the functional organization of visuomotor reflexes in the fruit fly, Drosophila, using an electronic flight simulator. Flies exhibit powerful avoidance responses to visual expansion centered laterally. The amplitude of these expansion responses is three times larger than those generated by image rotation. Avoidance of a laterally positioned focus of expansion emerges from an inversion of the optomotor response when motion is restricted to the rear visual hemisphere. Furthermore, motion restricted to rear quarter-fields elicits turning responses that are independent of the direction of image motion about the animal's yaw axis. The spatial heterogeneity of visuomotor responses explains a seemingly peculiar behavior in which flies robustly fixate the contracting pole of a translating flow field
    corecore