148,204 research outputs found

    Acoustic suspension system

    Get PDF
    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector

    Infrared tunable laser

    Get PDF
    A tunable laser apparatus is reported with a first wavelength selective reflector and a second wavelength selective reflector forming one end of an optical cavity, and a third wavelength selective reflector forming the other end of an optical cavity. A first lasable dye solution develops radiation of a wavelength selected by the first reflector and a second lasable dye solution develops radiation of a wavelength selected by the second reflector and a non-linear mixing crystal disposed within the optical cavity. The selected radiation is passed through the nonlinear mixing crystal causing it to develop radiation of a third wavelength which is transmitted out of the optical cavity through the third reflector

    Range and range rate system

    Get PDF
    A video controlled solid state range finding system which requires no radar, high power laser, or sophisticated laser target is disclosed. The effective range of the system is from 1 to about 200 ft. The system includes an opto-electric camera such as a lens CCD array device. A helium neon laser produces a source beam of coherent light which is applied to a beam splitter. The beam splitter applies a reference beam to the camera and produces an outgoing beam applied to a first angularly variable reflector which directs the outgoing beam to the distant object. An incoming beam is reflected from the object to a second angularly variable reflector which reflects the incoming beam to the opto-electric camera via the beam splitter. The first reflector and the second reflector are configured so that the distance travelled by the outgoing beam from the beam splitter and the first reflector is the same as the distance travelled by the incoming beam from the second reflector to the beam splitter. The reference beam produces a reference signal in the geometric center of the camera. The incoming beam produces an object signal at the camera

    Containerless high purity pulling process and apparatus for glass fiber

    Get PDF
    Apparatus and method for pulling optical glass fibers in a containerless environment is disclosed which includes a single axis acoustical levitation furnace in which a specimen is levitated and melted. A reflector unit is carried in the interior of the furnace and includes a reflector disposed centrally about the acoustical axis of the levitator. The reflector unit includes a circular shroud of insulation and a copper sleeve inserted in the unit which is hollow at for receiving a cooling medium. A fiber pulling bore is formed centrally in the reflector unit surrounded by cooling jacket to enhance solidification and formation of a fiber. A starting fiber strand is introduced into the melt and pulled outwardly through bore whereby the specimen fiber is started and formed as pulled therethrough. In order to replenish the melt and thus enable a continous process, a movable secondary reflector is provided which captures a supplemental specimen pellet and by movement of the reflector transfers it to the melt

    Solar energy collection system

    Get PDF
    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency

    Concepts and analysis for precision segmented reflector and feed support structures

    Get PDF
    Several issues surrounding the design of a large (20-meter diameter) Precision Segmented Reflector are investigated. The concerns include development of a reflector support truss geometry that will permit deployment into the required doubly-curved shape without significant member strains. For deployable and erectable reflector support trusses, the reduction of structural redundancy was analyzed to achieve reduced weight and complexity for the designs. The stiffness and accuracy of such reduced member trusses, however, were found to be affected to a degree that is unexpected. The Precision Segmented Reflector designs were developed with performance requirements that represent the Reflector application. A novel deployable sunshade concept was developed, and a detailed parametric study of various feed support structural concepts was performed. The results of the detailed study reveal what may be the most desirable feed support structure geometry for Precision Segmented Reflector/Large Deployable Reflector applications

    Deployable antenna reflector

    Get PDF
    The first phase in the development of a solid surface, deployable, antenna reflector is outlined and discussed. The deployment concept is described in conjunction with illustrations and photos of the fabricated reflector models. Details and results of the thermal distortion analysis are presented. Results indicate that the discussed reflector concept is an effective approach in satisfying the requirements for large deployable antennas in the 6 GHz to 100 GHz frequency regime

    Self-clamping arc light reflector for welding torch

    Get PDF
    This invention is directed to a coaxial extending metal mirror reflector attached to the electrode housing or gas cup on a welding torch. An electric welding torch with an internal viewing system for robotic welding is provded with an annular arc light reflector to reflect light from the arc back onto the workpiece. The reflector has a vertical split or gap in its surrounding wall to permit the adjacent wall ends forming the split to be sprung open slightly to permit the reflector to be removed or slipped onto the torch housing or gas cup. The upper opening of the reflector is slightly smaller than the torch housing or gas cup and therefore, when placed on the torch housing or gas cup has that springiness to cause it to clamp tightly on the housing or gas cup. The split or gap also serves to permit the feed of weld wire through to the weld area

    Gregorian all-reflective optical system

    Get PDF
    An optical heterodyne receiver comprises a system of reflectors forming a folded Gregorian configuration for collecting a signal beam, and an optical detector located at the focus of the system. A paraboloidal primary reflector and an elipsoidal secondary reflector face each other on an optical axis with the focus of the secondary reflector coinciding with the focus of the primary reflector. An auxiliary laser generates a local oscillator beam that is combined with the signal beam after the signal beam emerges from the exit pupil (which is also the aperture stop) of the system, and the resultant is impinged on the detector. A pair of image motion compensators is located as close to the exit pupil as possible for aligning off-axis inputs to the detector

    Primary reflector for solar energy collection systems

    Get PDF
    A fixed, linear, ground-based primary reflector is disclosed which has an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material. The device reflects solar energy to a movably supported collector that is kept at the concentrated line focus of the reflector primary. The primary reflector may be constructed by a process utilizing well-known freeway paving machinery
    corecore