56,698 research outputs found
Optimized Multimode Interference Fiber Based Refractometer in A Reflective Interrogation Scheme
A fiber based refractometer in a reflective interrogation scheme is investigated and optimized. A thin gold film was deposited on the tip of a coreless fiber section, which is spliced with a single mode fiber. The coreless fiber is a multimode waveguide, and the observed effects are due to multimode interference. To investigate and optimize the structure, the multimode part of the sensor is built with 3 different lengths: 58 mm, 29 mm and 17 mm. We use a broadband light source ranging from 1475 nm to 1650 nm and we test the sensors with liquids of varying refractive indices, from 1.333 to 1.438. Our results show that for a fixed wavelength, the sensor sensitivity is independent of the multimode fiber length, but we observed a sensitivity increase of approximately 0.7 nm/RIU for a one-nanometer increase in wavelength
Lyot-based Low Order Wavefront Sensor: Implementation on the Subaru Coronagraphic Extreme Adaptive Optics System and its Laboratory Performance
High throughput, low inner working angle (IWA) phase masks coronagraphs are
essential to directly image and characterize (via spectroscopy) earth-like
planets. However, the performance of low-IWA coronagraphs is limited by
residual pointing errors and other low-order modes. The extent to which
wavefront aberrations upstream of the coronagraph are corrected and calibrated
drives coronagraphic performance. Addressing this issue is essential for
preventing coronagraphic leaks, thus we have developed a Lyot-based low order
wave front sensor (LLOWFS) to control the wavefront aberrations in a
coronagraph. The LLOWFS monitors the starlight rejected by the coronagraphic
mask using a reflective Lyot stop in the downstream pupil plane. The early
implementation of LLOWFS at LESIA, Observatoire de Paris demonstrated an open
loop measurement accuracy of 0.01 lambda/D for tip-tilt at 638 nm when used in
conjunction with a four quadrant phase mask (FQPM) in the laboratory. To
further demonstrate our concept, we have installed the reflective Lyot stops on
the Subaru Coronagraphic Extreme AO (SCExAO) system at the Subaru Telescope and
modified the system to support small IWA phase mask coronagraphs (< 1 lambda/D)
on-sky such as FQPM, eight octant phase mask, vector vortex coronagraph and the
phase induced amplitude apodization complex phase mask coronagraph with a goal
of obtaining milli arc-second pointing accuracy. Laboratory results have shown
the measurement of tip, tilt, focus, oblique and right astigmatism at 1.55 um
for the vector vortex coronagraph. Our initial on-sky result demonstrate the
closed loop accuracy of < 7 x 10-3 lambda/D at 1.6 um for tip, tilt and focus
aberrations with the vector vortex coronagraph.Comment: 9 pages, 9 Figures, Proc. of SPIE Astronomical Telescopes +
Instrumentation 201
Sun Sensor Based on a Luminance Spiking Pixel Array
We present a novel sun sensor concept. It is the very first sun sensor built with an address event representation spiking pixel matrix. Its pixels spike with a frequency proportional to illumination. It offers remarkable advantages over conventional digital sun sensors based on active pixel sensor (APS) pixels. Its output data flow is quite reduced. It is possible to resolve the sun position just receiving one single event operating in time-to-first-spike mode. It operates with a latency in the order of milliseconds. It has higher dynamic range than APS image sensors (higher than 100 dB). A custom algorithm to compute the centroid of the illuminated pixels is presented. Experimental results are provided.Universidad de Cádiz PR2016-072Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía TIC 2012- 2338Office of Naval Research (USA) N00014141035
Wind dynamic range video camera
A television camera apparatus is disclosed in which bright objects are attenuated to fit within the dynamic range of the system, while dim objects are not. The apparatus receives linearly polarized light from an object scene, the light being passed by a beam splitter and focused on the output plane of a liquid crystal light valve. The light valve is oriented such that, with no excitation from the cathode ray tube, all light is rotated 90 deg and focused on the input plane of the video sensor. The light is then converted to an electrical signal, which is amplified and used to excite the CRT. The resulting image is collected and focused by a lens onto the light valve which rotates the polarization vector of the light to an extent proportional to the light intensity from the CRT. The overall effect is to selectively attenuate the image pattern focused on the sensor
Angular and Polarization Response of Multimode Sensors with Resistive-Grid Absorbers
High sensitivity receiver systems with near ideal polarization sensitivity
are highly desirable for development of millimeter and sub-millimeter radio
astronomy. Multimoded bolometers provide a unique solution to achieve such
sensitivity, for which hundreds of single-mode sensors would otherwise be
required. The primary concern in employing such multimoded sensors for
polarimetery is the control of the polarization systematics. In this paper, we
examine the angular- and polarization- dependent absorption pattern of a thin
resistive grid or membrane, which models an absorber used for a multimoded
bolometer. The result shows that a freestanding thin resistive absorber with a
surface resistivity of \eta/2, where \eta\ is the impedance of free space,
attains a beam pattern with equal E- and H-plane responses, leading to zero
cross polarization. For a resistive-grid absorber, the condition is met when a
pair of grids is positioned orthogonal to each other and both have a
resistivity of \eta/2. When a reflective backshort termination is employed to
improve absorption efficiency, the cross-polar level can be suppressed below
-30 dB if acceptance angle of the sensor is limited to <60degrees. The small
cross-polar systematics have even-parity patterns and do not contaminate the
measurements of odd-parity polarization patterns, for which many of recent
instruments for cosmic microwave background are designed. Underlying symmetry
that suppresses these cross-polar systematics is discussed in detail. The
estimates and formalism provided in this paper offer key tools in the design
consideration of the instruments using the multimoded polarimeters.Comment: 22 pages, 15 figure
Experimental study of a low-order wavefront sensor for the high-contrast coronagraphic imager EXCEDE
The mission EXCEDE (EXoplanetary Circumstellar Environments and Disk
Explorer), selected by NASA for technology development, is designed to study
the formation, evolution and architectures of exoplanetary systems and
characterize circumstellar environments into stellar habitable zones. It is
composed of a 0.7 m telescope equipped with a Phase-Induced Amplitude
Apodization Coronagraph (PIAA-C) and a 2000-element MEMS deformable mirror,
capable of raw contrasts of 1e-6 at 1.2 lambda/D and 1e-7 above 2 lambda/D. One
of the key challenges to achieve those contrasts is to remove low-order
aberrations, using a Low-Order WaveFront Sensor (LOWFS). An experiment
simulating the starlight suppression system is currently developed at NASA Ames
Research Center, and includes a LOWFS controlling tip/tilt modes in real time
at 500 Hz. The LOWFS allowed us to reduce the tip/tilt disturbances to 1e-3
lambda/D rms, enhancing the previous contrast by a decade, to 8e-7 between 1.2
and 2 lambda/D. A Linear Quadratic Gaussian (LQG) controller is currently
implemented to improve even more that result by reducing residual vibrations.
This testbed shows that a good knowledge of the low-order disturbances is a key
asset for high contrast imaging, whether for real-time control or for post
processing.Comment: 12 pages, 20 figures, proceeding of the SPIE conference
Optics+Photonics, San Diego 201
Self-Referencing Fiber-Optic Intensity Sensors Using Ring Resonators and Fiber Bragg Gratings
An improved ring resonator self-referencing technique in a new reflection configuration for remote fiber-optic intensity sensors is demonstrated using fiber Bragg gratings. Sensor sensitivity doubles and a single fiber lead is used. The sensor is interrogated at two subcarrier frequencies having a high rejection of interference from laser source intensity fluctuations and loss in the fiber lead. We experimentally demonstrate the efficiency of the new reflection configuration, the usefulness of the theoretical model proposed, and discuss design parameters for optimum insertion lossesThis work was supported in part by CICYT (TIC2003-03783 and TEC2006-13273-C03-03-MIC), in part by UC3M (FAVICOBIS), in part by CAM (FACTOTEM-CM:S-0505/ESP/000417), and in part by COST 299.Publicad
A sun sensor implemented with an asynchronous luminance vision sensor
A sun sensor implemented with a spiking pixel matrix is reported. It is the very first one based on an asynchronous event-based pixel array. A paradigm associated to classic digital sun sensors is solved with this approach. Only pixels illuminated by the sun light are readout. Hence, the output data flow is quite reduced. The computational load to resolve the sun position is quite low, comparing to prior sensors. Sensor's latency is in the order of milliseconds. The advantages over implementations with APS pixels are more reduced data flow, less latency, and higher dynamic range.Universidad de Cádiz PR2016-072Ministerio de Economía y Competitividad TEC2015-66878- C3-1-RJunta de Andalucía TIC 2012-2338Office of Naval Research (USA) N00014141035
- …
