1,309,527 research outputs found

    First order quantum corrections to the classical reflection factor of the sinh-Gordon model

    Get PDF
    The sinh-Gordon model is restricted to a half-line by boundary conditions maintaining integrability. A perturbative calculation of the reflection factor is given to one loop order in the bulk coupling and to first order in the difference of the two parameters introduced at the boundary, providing a further verification of Ghoshal's formula. The calculation is consistent with a conjecture for the general dependence of the reflection factor on the boundary parameters and the bulk coupling.Comment: 16 pages, 1 figur

    Photodetachment of H^{-} near a partial reflecting surface

    Full text link
    Theoretical and interpretative study on the subject of photodetachment of H^{-} near a partial reflecting surface is presented, and the absorption effect of the surface is investigated on the total and differential cross sections using a theoretical imaging method. To understand the absorption effect, a reflection parameter KK is introduced as a multiplicative factor to the outgoing detached-electron wave of H^- propagating toward the wall. The reflection parameter measures, how much electron wave would reflect from the surface; K=0 corresponds to no reflection and K=1 corresponds to the total reflection.Comment: 8 pages, 4 figure

    Comments on the Boundary Scattering Phase

    Full text link
    We present a simple solution to the crossing equation for an open string worldsheet reflection matrix, with boundaries preserving a SU(1|2)^2 residual symmetry, which constrains the boundary dressing factor. In addition, we also propose an analogous crossing equation for the dressing factor where extra boundary degrees of freedom preserve a SU(2|2)^2 residual symmetry.Comment: 14 pages, 2 figures; v2: affiliation correcte

    On the quantum reflection factor for the sinh-Gordon model with general boundary conditions

    Get PDF
    The one loop quantum corrections to the classical reflection factor of the sinh-Gordon model are calculated partially for general boundary conditions. The model is studied under boundary conditions which are compatible with integrability, and in the framework of the conventional perturbation theory generalized to the affine Toda field theory. It is found that the general form of the related quantum corrections are hypergeometric functions.Comment: 32 pages and 1 figure. LaTex2

    Multi-epoch X-ray observations of the Seyfert 1.2 galaxy Mrk 79: bulk motion of the illuminating X-ray source

    Get PDF
    Multi-epoch X-ray spectroscopy (0.3-25 keV) of the Seyfert 1.2 galaxy Mrk 79 (UGC 3973) spanning nearly eight years and a factor of three in broadband flux are analysed. The data are obtained at seven epochs with either XMM-Newton or Suzaku. Comparison with contemporaneous RXTE monitoring indicate that all flux states of Mrk 79 are represented by the data. The spectra are fitted in a self-consistent manner adopting a power law and ionised reflection to describe the broadband continuum. Modification of the spectra by a distant photoionised medium, seen predominantly in emission, are also included. Under the assumption that the inner disk is at the innermost stable circular orbit, our blurred reflection models give a spin of a = 0.7+/-0.1. The reflection component in each spectrum is weaker than predicted by simple reflection models. If the illuminating X-ray emission is produced by flares above the disk that move at mildly relativistic velocities, however, diminished reflection is expected. Light bending due to strong gravity near black holes can influence how the illuminating and reflected flux are observed; variations in Mrk 79 do not suggest that light bending is important in this source.Comment: 13 pages. Accepted for publication in MNRA

    Second order quantum corrections to the classical reflection factor of the sinh-Gordon model

    Get PDF
    The sinh-Gordon model on a half-line with integrable boundary conditions is considered in low order perturbation theory developed in affine Toda field theory. The quantum corrections to the classical reflection factor of the model are studied up to the second order in the difference of the two boundary parameters and to one loop order in the bulk coupling. It is noticed that the general form of the second order quantum corrections are consistent with Ghoshal's formula.Comment: 24 pages and 1 figure. LaTex2

    Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar

    Full text link
    We report on the coherent reflection spectroscopy of a high-quality factor micropillar, in the strong coupling regime with a single InGaAs annealed quantum dot. The absolute reflectivity measurement is used to study the characteristics of our device at low and high excitation power. The strong coupling is obtained with a g=16 \mueV coupling strength in a 7.3\mum diameter micropillar, with a cavity spectral width kappa=20.5 \mueV (Q=65 000). The factor of merit of the strong-coupling regime, 4g/kappa=3, is the current state-of-the-art for a quantum dot-micropillar system

    Experimental investigation of the radiation of sound from an unflanged duct and a bellmouth, including the flow effect

    Get PDF
    The radiation of sound from an inlet as a function of flow velocity, frequency, duct mode structure, and inlet geometry was examined by using a spinning mode synthesizer to insure a given space-time structure inside the duct. Measurements of the radiation pattern (amplitude and phase) and of the pressure reflection coefficient were obtained over an azimuthal wave number range of 0 to 6 and a frequency range up to 5000 Hz for an unflanged duct and a bellmouth. The measured radiated field and pressure reflection coefficient without flow for the unflanged duct agree reasonably well with theory. The influence of the inlet contour appears to be very drastic near the cut-on frequency of a mode and reasonable agreement is found between the bellmouth pressure reflection coefficient and a infinite hyperboloidal inlet theory. It is also shown that the flow has a weak effect on the amplitude of the directivity factor but significantly shifts the directivity factor phase. The influence of the flow on the modulus of the pressure reflection coefficient is found to be well described by a theoretical prediction

    Numerical investigation of a 2D-grating for light extraction of a bottom emitting OLED

    Get PDF
    An important limiting factor for efficient white light emitting organic LEDs is the total internal reflection occurring at each interface. In a bottom emitting OLED light is trapped by reflection at the interface between the organic layers and glass substrate and at the interface between the glass substrate and air. We investigate the use of a grating at the glass substrate-air interface. In this paper we will discuss the developed 3D-simulation method and several important simulation results. Our simulation method shows that the grating extracts approximately 50 % more power in comparison with a planar device. These results are comparable with the us
    corecore