624 research outputs found

    Spatial Compressive Sensing for MIMO Radar

    Full text link
    We study compressive sensing in the spatial domain to achieve target localization, specifically direction of arrival (DOA), using multiple-input multiple-output (MIMO) radar. A sparse localization framework is proposed for a MIMO array in which transmit and receive elements are placed at random. This allows for a dramatic reduction in the number of elements needed, while still attaining performance comparable to that of a filled (Nyquist) array. By leveraging properties of structured random matrices, we develop a bound on the coherence of the resulting measurement matrix, and obtain conditions under which the measurement matrix satisfies the so-called isotropy property. The coherence and isotropy concepts are used to establish uniform and non-uniform recovery guarantees within the proposed spatial compressive sensing framework. In particular, we show that non-uniform recovery is guaranteed if the product of the number of transmit and receive elements, MN (which is also the number of degrees of freedom), scales with K(log(G))^2, where K is the number of targets and G is proportional to the array aperture and determines the angle resolution. In contrast with a filled virtual MIMO array where the product MN scales linearly with G, the logarithmic dependence on G in the proposed framework supports the high-resolution provided by the virtual array aperture while using a small number of MIMO radar elements. In the numerical results we show that, in the proposed framework, compressive sensing recovery algorithms are capable of better performance than classical methods, such as beamforming and MUSIC.Comment: To appear in IEEE Transactions on Signal Processin

    Sparsity based methods for target localization in multi-sensor radar

    Get PDF
    In this dissertation, several sparsity-based methods for ground moving target indicator (GMTI) radar with multiple-input multiple-output (MIMO) random arrays are proposed. MIMO random arrays are large arrays that employ multiple transmitters and receivers, the positions of the transmitters and the receivers are randomly chosen. Since the resolution of the array depends on the size of the array, MIMO random arrays obtain a high resolution. However, since the positions of the sensors are randomly chosen, the array suffers from large sidelobes which may lead to an increased false alarm probability. The number of sensors of a MIMO random array required to maintain a certain level of peak sidelobes is studied. It is shown that the number of sensors scales with the logarithm of the array aperture, in contrast with a ULA where the number of elements scales linearly with the array aperture. The problem of sparse target detection given space-time observations from MIMO random arrays is presented. The observations are obtained in the presence of Gaussian colored noise of unknown covariance matrix, but for which secondary data is available for its estimation. To solve the detection problem two sparsity-based algorithms, the MP-STAP and the MBMP-STAP algorithms are proposed that utilizes knowledge of the upper bound on the number of targets. A constant false alarm rate (CFAR) sparsity based detector that does not utilize any information on the number of targets referred to as MP-CFAR and MBMP-CFAR are also developed. A performance analysis for the new CFAR detector is also derived, the metrics used to describe the performance of the detector are the probability of false alarm and the probability of detection. A grid refinement procedure is also proposed to eliminate the need for a dense grid which would increase the computational complexity significantly. Expressions for the computational complexity of the proposed CFAR detectors are derived. It is shown that the proposed CFAR detectors outperforms the popular adaptive beamformer at a modest increase in computational complexity

    Structured random measurements in signal processing

    Full text link
    Compressed sensing and its extensions have recently triggered interest in randomized signal acquisition. A key finding is that random measurements provide sparse signal reconstruction guarantees for efficient and stable algorithms with a minimal number of samples. While this was first shown for (unstructured) Gaussian random measurement matrices, applications require certain structure of the measurements leading to structured random measurement matrices. Near optimal recovery guarantees for such structured measurements have been developed over the past years in a variety of contexts. This article surveys the theory in three scenarios: compressed sensing (sparse recovery), low rank matrix recovery, and phaseless estimation. The random measurement matrices to be considered include random partial Fourier matrices, partial random circulant matrices (subsampled convolutions), matrix completion, and phase estimation from magnitudes of Fourier type measurements. The article concludes with a brief discussion of the mathematical techniques for the analysis of such structured random measurements.Comment: 22 pages, 2 figure

    Global optimization methods for localization in compressive sensing

    Get PDF
    The dissertation discusses compressive sensing and its applications to localization in multiple-input multiple-output (MIMO) radars. Compressive sensing is a paradigm at the intersection between signal processing and optimization. It advocates the sensing of “sparse” signals (i.e., represented using just a few terms from a basis expansion) by using a sampling rate much lower than that required by the Nyquist-Shannon sampling theorem (i.e., twice the highest frequency present in the signal of interest). Low-rate sampling reduces implementation’s constraints and translates into cost savings due to fewer measurements required. This is particularly true in localization applications when the number of measurements is commensurate to antenna elements. The theory of compressive sensing provides precise guidance on how the measurements should be acquired, and which optimization algorithm should be used for signal recovery. The first part of the dissertation addresses the application of compressive sensing for localization in the spatial domain, specifically direction of arrival (DOA), using MIMO radar. A sparse localization framework is proposed for a MIMO array in which transmit and receive elements are placed at random. This allows for a dramatic reduction in the number of elements needed, while still attaining performance comparable to that of a filled (Nyquist) array. By leveraging properties of structured random matrices, a bound on the coherence of the resulting measurement matrix is obtained, and conditions under which the measurement matrix satisfies the so-called isotropy property are detailed. The coherence and isotropy concepts are used to establish uniform and non-uniform recovery guarantees within the proposed spatial compressive sensing framework. In particular, it is shown that non-uniform recovery is guaranteed if the product of the number of transmit and receive elements, MN (which is also the number of degrees of freedom), scales with K (log G)2, where K is the number of targets and G is proportional to the array aperture and determines the angle resolution. In contrast with a filled virtual MIMO array where the product MN scales linearly with G, the logarithmic dependence on G in the proposed framework supports the high-resolution provided by the virtual array aperture while using a small number of MIMO radar elements. The second part of the dissertation focuses on the sparse recovery problem at the heart of compressive sensing. An algorithm, dubbed Multi-Branch Matching Pursuit (MBMP), is presented which combines three different paradigms: being a greedy method, it performs iterative signal support estimation; as a rank-aware method, it is able to exploit signal subspace information when multiple snapshots are available; and, as its name foretells, it possesses a multi-branch structure which allows it to trade-off performance (e.g., measurements) for computational complexity. A sufficient condition under which MBMP can recover a sparse signal is obtained. This condition, named MB-coherence, is met when the columns of the measurement matrix are sufficiently “incoherent” and when the signal-to-noise ratio is sufficiently high. The condition shows that successful recovery with MBMP is guaranteed for dictionaries which do not satisfy previously known conditions (e.g., coherence, cumulative coherence, or the Hanman relaxed coherence). Finally, by leveraging the MBMP algorithm, a framework for target detection from a set of compressive sensing radar measurements is established. The proposed framework does not require any prior information about the targets’ scene, and it is competitive with respect to state-of-the-art detection compressive sensing algorithms
    • …
    corecore