80,304 research outputs found

    Skeleton-Based Human Action Recognition with Global Context-Aware Attention LSTM Networks

    Full text link
    Human action recognition in 3D skeleton sequences has attracted a lot of research attention. Recently, Long Short-Term Memory (LSTM) networks have shown promising performance in this task due to their strengths in modeling the dependencies and dynamics in sequential data. As not all skeletal joints are informative for action recognition, and the irrelevant joints often bring noise which can degrade the performance, we need to pay more attention to the informative ones. However, the original LSTM network does not have explicit attention ability. In this paper, we propose a new class of LSTM network, Global Context-Aware Attention LSTM (GCA-LSTM), for skeleton based action recognition. This network is capable of selectively focusing on the informative joints in each frame of each skeleton sequence by using a global context memory cell. To further improve the attention capability of our network, we also introduce a recurrent attention mechanism, with which the attention performance of the network can be enhanced progressively. Moreover, we propose a stepwise training scheme in order to train our network effectively. Our approach achieves state-of-the-art performance on five challenging benchmark datasets for skeleton based action recognition

    Efficient Action Detection in Untrimmed Videos via Multi-Task Learning

    Full text link
    This paper studies the joint learning of action recognition and temporal localization in long, untrimmed videos. We employ a multi-task learning framework that performs the three highly related steps of action proposal, action recognition, and action localization refinement in parallel instead of the standard sequential pipeline that performs the steps in order. We develop a novel temporal actionness regression module that estimates what proportion of a clip contains action. We use it for temporal localization but it could have other applications like video retrieval, surveillance, summarization, etc. We also introduce random shear augmentation during training to simulate viewpoint change. We evaluate our framework on three popular video benchmarks. Results demonstrate that our joint model is efficient in terms of storage and computation in that we do not need to compute and cache dense trajectory features, and that it is several times faster than its sequential ConvNets counterpart. Yet, despite being more efficient, it outperforms state-of-the-art methods with respect to accuracy.Comment: WACV 2017 camera ready, minor updates about test time efficienc

    Facial Action Unit Detection Using Attention and Relation Learning

    Full text link
    Attention mechanism has recently attracted increasing attentions in the field of facial action unit (AU) detection. By finding the region of interest of each AU with the attention mechanism, AU-related local features can be captured. Most of the existing attention based AU detection works use prior knowledge to predefine fixed attentions or refine the predefined attentions within a small range, which limits their capacity to model various AUs. In this paper, we propose an end-to-end deep learning based attention and relation learning framework for AU detection with only AU labels, which has not been explored before. In particular, multi-scale features shared by each AU are learned firstly, and then both channel-wise and spatial attentions are adaptively learned to select and extract AU-related local features. Moreover, pixel-level relations for AUs are further captured to refine spatial attentions so as to extract more relevant local features. Without changing the network architecture, our framework can be easily extended for AU intensity estimation. Extensive experiments show that our framework (i) soundly outperforms the state-of-the-art methods for both AU detection and AU intensity estimation on the challenging BP4D, DISFA, FERA 2015 and BP4D+ benchmarks, (ii) can adaptively capture the correlated regions of each AU, and (iii) also works well under severe occlusions and large poses.Comment: This paper is accepted by IEEE Transactions on Affective Computin
    • …
    corecore