439,729 research outputs found

    Low-Density Arrays of Circulant Matrices: Rank and Row-Redundancy Analysis, and Quasi-Cyclic LDPC Codes

    Full text link
    This paper is concerned with general analysis on the rank and row-redundancy of an array of circulants whose null space defines a QC-LDPC code. Based on the Fourier transform and the properties of conjugacy classes and Hadamard products of matrices, we derive tight upper bounds on rank and row-redundancy for general array of circulants, which make it possible to consider row-redundancy in constructions of QC-LDPC codes to achieve better performance. We further investigate the rank of two types of construction of QC-LDPC codes: constructions based on Vandermonde Matrices and Latin Squares and give combinatorial expression of the exact rank in some specific cases, which demonstrates the tightness of the bound we derive. Moreover, several types of new construction of QC-LDPC codes with large row-redundancy are presented and analyzed.Comment: arXiv admin note: text overlap with arXiv:1004.118

    Essential plasticity and redundancy of metabolism unveiled by synthetic lethality analysis

    Full text link
    We unravel how functional plasticity and redundancy are essential mechanisms underlying the ability to survive of metabolic networks. We perform an exhaustive computational screening of synthetic lethal reaction pairs in Escherichia coli in a minimal medium and we find that synthetic lethal pairs divide in two different groups depending on whether the synthetic lethal interaction works as a backup or as a parallel use mechanism, the first corresponding to essential plasticity and the second to essential redundancy. In E. coli, the analysis of pathways entanglement through essential redundancy supports the view that synthetic lethality affects preferentially a single function or pathway. In contrast, essential plasticity, the dominant class, tends to be inter-pathway but strongly localized and unveils Cell Envelope Biosynthesis as an essential backup for Membrane Lipid Metabolism. When comparing E. coli and Mycoplasma pneumoniae, we find that the metabolic networks of the two organisms exhibit a large difference in the relative importance of plasticity and redundancy which is consistent with the conjecture that plasticity is a sophisticated mechanism that requires a complex organization. Finally, coessential reaction pairs are explored in different environmental conditions to uncover the interplay between the two mechanisms. We find that synthetic lethal interactions and their classification in plasticity and redundancy are basically insensitive to medium composition, and are highly conserved even when the environment is enriched with nonessential compounds or overconstrained to decrease maximum biomass formation.Comment: 22 pages, 4 figure

    Fault-tolerant sub-lithographic design with rollback recovery

    Get PDF
    Shrinking feature sizes and energy levels coupled with high clock rates and decreasing node capacitance lead us into a regime where transient errors in logic cannot be ignored. Consequently, several recent studies have focused on feed-forward spatial redundancy techniques to combat these high transient fault rates. To complement these studies, we analyze fine-grained rollback techniques and show that they can offer lower spatial redundancy factors with no significant impact on system performance for fault rates up to one fault per device per ten million cycles of operation (Pf = 10^-7) in systems with 10^12 susceptible devices. Further, we concretely demonstrate these claims on nanowire-based programmable logic arrays. Despite expensive rollback buffers and general-purpose, conservative analysis, we show the area overhead factor of our technique is roughly an order of magnitude lower than a gate level feed-forward redundancy scheme
    corecore