26,796 research outputs found

    SL(N+1,R) Toda Solitons in Supergravities

    Full text link
    We construct (D−3)(D-3)-brane and instanton solutions using N≤10−DN \le 10-D one-form field strengths in DD dimensions, and show that the equations of motion can be cast into the form of the SL(N+1,R)SL(N+1,R) Toda equations. For generic values of the charges, the solutions are non-supersymmetric; however, they reduce to the previously-known multiply-charged supersymmetric solutions when appropriate charges vanish.Comment: LATEX, 16 pages, no figure

    Solving Shift Register Problems over Skew Polynomial Rings using Module Minimisation

    Get PDF
    For many algebraic codes the main part of decoding can be reduced to a shift register synthesis problem. In this paper we present an approach for solving generalised shift register problems over skew polynomial rings which occur in error and erasure decoding of ℓ\ell-Interleaved Gabidulin codes. The algorithm is based on module minimisation and has time complexity O(ℓμ2)O(\ell \mu^2) where μ\mu measures the size of the input problem.Comment: 10 pages, submitted to WCC 201

    Smaller SDP for SOS Decomposition

    Full text link
    A popular numerical method to compute SOS (sum of squares of polynomials) decompositions for polynomials is to transform the problem into semi-definite programming (SDP) problems and then solve them by SDP solvers. In this paper, we focus on reducing the sizes of inputs to SDP solvers to improve the efficiency and reliability of those SDP based methods. Two types of polynomials, convex cover polynomials and split polynomials, are defined. A convex cover polynomial or a split polynomial can be decomposed into several smaller sub-polynomials such that the original polynomial is SOS if and only if the sub-polynomials are all SOS. Thus the original SOS problem can be decomposed equivalently into smaller sub-problems. It is proved that convex cover polynomials are split polynomials and it is quite possible that sparse polynomials with many variables are split polynomials, which can be efficiently detected in practice. Some necessary conditions for polynomials to be SOS are also given, which can help refute quickly those polynomials which have no SOS representations so that SDP solvers are not called in this case. All the new results lead to a new SDP based method to compute SOS decompositions, which improves this kind of methods by passing smaller inputs to SDP solvers in some cases. Experiments show that the number of monomials obtained by our program is often smaller than that by other SDP based software, especially for polynomials with many variables and high degrees. Numerical results on various tests are reported to show the performance of our program.Comment: 18 page

    Tabulation of cubic function fields via polynomial binary cubic forms

    Full text link
    We present a method for tabulating all cubic function fields over Fq(t)\mathbb{F}_q(t) whose discriminant DD has either odd degree or even degree and the leading coefficient of −3D-3D is a non-square in Fq∗\mathbb{F}_{q}^*, up to a given bound BB on the degree of DD. Our method is based on a generalization of Belabas' method for tabulating cubic number fields. The main theoretical ingredient is a generalization of a theorem of Davenport and Heilbronn to cubic function fields, along with a reduction theory for binary cubic forms that provides an efficient way to compute equivalence classes of binary cubic forms. The algorithm requires O(B4qB)O(B^4 q^B) field operations as B→∞B \rightarrow \infty. The algorithm, examples and numerical data for q=5,7,11,13q=5,7,11,13 are included.Comment: 30 pages, minor typos corrected, extra table entries added, revamped complexity analysis of the algorithm. To appear in Mathematics of Computatio
    • …
    corecore