2,498 research outputs found

    A survey on vulnerability of federated learning: A learning algorithm perspective

    Get PDF
    Federated Learning (FL) has emerged as a powerful paradigm for training Machine Learning (ML), particularly Deep Learning (DL) models on multiple devices or servers while maintaining data localized at owners’ sites. Without centralizing data, FL holds promise for scenarios where data integrity, privacy and security and are critical. However, this decentralized training process also opens up new avenues for opponents to launch unique attacks, where it has been becoming an urgent need to understand the vulnerabilities and corresponding defense mechanisms from a learning algorithm perspective. This review paper takes a comprehensive look at malicious attacks against FL, categorizing them from new perspectives on attack origins and targets, and providing insights into their methodology and impact. In this survey, we focus on threat models targeting the learning process of FL systems. Based on the source and target of the attack, we categorize existing threat models into four types, Data to Model (D2M), Model to Data (M2D), Model to Model (M2M) and composite attacks. For each attack type, we discuss the defense strategies proposed, highlighting their effectiveness, assumptions and potential areas for improvement. Defense strategies have evolved from using a singular metric to excluding malicious clients, to employing a multifaceted approach examining client models at various phases. In this survey paper, our research indicates that the to-learn data, the learning gradients, and the learned model at different stages all can be manipulated to initiate malicious attacks that range from undermining model performance, reconstructing private local data, and to inserting backdoors. We have also seen these threat are becoming more insidious. While earlier studies typically amplified malicious gradients, recent endeavors subtly alter the least significant weights in local models to bypass defense measures. This literature review provides a holistic understanding of the current FL threat landscape and highlights the importance of developing robust, efficient, and privacy-preserving defenses to ensure the safe and trusted adoption of FL in real-world applications. The categorized bibliography can be found at: https://github.com/Rand2AI/Awesome-Vulnerability-of-Federated-Learning

    A survey on vulnerability of federated learning: A learning algorithm perspective

    Get PDF
    Federated Learning (FL) has emerged as a powerful paradigm for training Machine Learning (ML), particularly Deep Learning (DL) models on multiple devices or servers while maintaining data localized at owners’ sites. Without centralizing data, FL holds promise for scenarios where data integrity, privacy and security and are critical. However, this decentralized training process also opens up new avenues for opponents to launch unique attacks, where it has been becoming an urgent need to understand the vulnerabilities and corresponding defense mechanisms from a learning algorithm perspective. This review paper takes a comprehensive look at malicious attacks against FL, categorizing them from new perspectives on attack origins and targets, and providing insights into their methodology and impact. In this survey, we focus on threat models targeting the learning process of FL systems. Based on the source and target of the attack, we categorize existing threat models into four types, Data to Model (D2M), Model to Data (M2D), Model to Model (M2M) and composite attacks. For each attack type, we discuss the defense strategies proposed, highlighting their effectiveness, assumptions and potential areas for improvement. Defense strategies have evolved from using a singular metric to excluding malicious clients, to employing a multifaceted approach examining client models at various phases. In this survey paper, our research indicates that the to-learn data, the learning gradients, and the learned model at different stages all can be manipulated to initiate malicious attacks that range from undermining model performance, reconstructing private local data, and to inserting backdoors. We have also seen these threat are becoming more insidious. While earlier studies typically amplified malicious gradients, recent endeavors subtly alter the least significant weights in local models to bypass defense measures. This literature review provides a holistic understanding of the current FL threat landscape and highlights the importance of developing robust, efficient, and privacy-preserving defenses to ensure the safe and trusted adoption of FL in real-world applications. The categorized bibliography can be found at: https://github.com/Rand2AI/Awesome-Vulnerability-of-Federated-Learning

    Distributed Ledger Technology (DLT) Applications in Payment, Clearing, and Settlement Systems:A Study of Blockchain-Based Payment Barriers and Potential Solutions, and DLT Application in Central Bank Payment System Functions

    Get PDF
    Payment, clearing, and settlement systems are essential components of the financial markets and exert considerable influence on the overall economy. While there have been considerable technological advancements in payment systems, the conventional systems still depend on centralized architecture, with inherent limitations and risks. The emergence of Distributed ledger technology (DLT) is being regarded as a potential solution to transform payment and settlement processes and address certain challenges posed by the centralized architecture of traditional payment systems (Bank for International Settlements, 2017). While proof-of-concept projects have demonstrated the technical feasibility of DLT, significant barriers still hinder its adoption and implementation. The overarching objective of this thesis is to contribute to the developing area of DLT application in payment, clearing and settlement systems, which is still in its initial stages of applications development and lacks a substantial body of scholarly literature and empirical research. This is achieved by identifying the socio-technical barriers to adoption and diffusion of blockchain-based payment systems and the solutions proposed to address them. Furthermore, the thesis examines and classifies various applications of DLT in central bank payment system functions, offering valuable insights into the motivations, DLT platforms used, and consensus algorithms for applicable use cases. To achieve these objectives, the methodology employed involved a systematic literature review (SLR) of academic literature on blockchain-based payment systems. Furthermore, we utilized a thematic analysis approach to examine data collected from various sources regarding the use of DLT applications in central bank payment system functions, such as central bank white papers, industry reports, and policy documents. The study's findings on blockchain-based payment systems barriers and proposed solutions; challenge the prevailing emphasis on technological and regulatory barriers in the literature and industry discourse regarding the adoption and implementation of blockchain-based payment systems. It highlights the importance of considering the broader socio-technical context and identifying barriers across all five dimensions of the social technical framework, including technological, infrastructural, user practices/market, regulatory, and cultural dimensions. Furthermore, the research identified seven DLT applications in central bank payment system functions. These are grouped into three overarching themes: central banks' operational responsibilities in payment and settlement systems, issuance of central bank digital money, and regulatory oversight/supervisory functions, along with other ancillary functions. Each of these applications has unique motivations or value proposition, which is the underlying reason for utilizing in that particular use case

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Digitalization and Development

    Get PDF
    This book examines the diffusion of digitalization and Industry 4.0 technologies in Malaysia by focusing on the ecosystem critical for its expansion. The chapters examine the digital proliferation in major sectors of agriculture, manufacturing, e-commerce and services, as well as the intermediary organizations essential for the orderly performance of socioeconomic agents. The book incisively reviews policy instruments critical for the effective and orderly development of the embedding organizations, and the regulatory framework needed to quicken the appropriation of socioeconomic synergies from digitalization and Industry 4.0 technologies. It highlights the importance of collaboration between government, academic and industry partners, as well as makes key recommendations on how to encourage adoption of IR4.0 technologies in the short- and long-term. This book bridges the concepts and applications of digitalization and Industry 4.0 and will be a must-read for policy makers seeking to quicken the adoption of its technologies

    SRSS: A New Chaos-Based Single-Round Single S-Box Image Encryption Scheme for Highly Auto-Correlated Data

    Full text link
    With the advent of digital communication, securing digital images during transmission and storage has become a critical concern. The traditional s-box substitution methods often fail to effectively conceal the information within highly auto-correlated regions of an image. This paper addresses the security issues presented by three prevalent S-box substitution methods, i.e., single S-box, multiple S-boxes, and multiple rounds with multiple S-boxes, especially when handling images with highly auto-correlated pixels. To resolve the addressed security issues, this paper proposes a new scheme SRSS-the Single Round Single S-Box encryption scheme. SRSS uses a single S-box for substitution in just one round to break the pixel correlations and encrypt the plaintext image effectively. Additionally, this paper introduces a new Chaos-based Random Operation Selection System-CROSS, which nullifies the requirement for multiple S-boxes, thus reducing the encryption scheme's complexity. By randomly selecting the operation to be performed on each pixel, driven by a chaotic sequence, the proposed scheme effectively scrambles even high auto-correlation areas. When compared to the substitution methods mentioned above, the proposed encryption scheme exhibited exceptionally well in just a single round with a single S-box. The close-to-ideal statistical security analysis results, i.e., an entropy of 7.89 and a correlation coefficient of 0.007, validate the effectiveness of the proposed scheme. This research offers an innovative path forward for securing images in applications requiring low computational complexity and fast encryption and decryption speeds.Comment: 6 Page

    Investigating the learning potential of the Second Quantum Revolution: development of an approach for secondary school students

    Get PDF
    In recent years we have witnessed important changes: the Second Quantum Revolution is in the spotlight of many countries, and it is creating a new generation of technologies. To unlock the potential of the Second Quantum Revolution, several countries have launched strategic plans and research programs that finance and set the pace of research and development of these new technologies (like the Quantum Flagship, the National Quantum Initiative Act and so on). The increasing pace of technological changes is also challenging science education and institutional systems, requiring them to help to prepare new generations of experts. This work is placed within physics education research and contributes to the challenge by developing an approach and a course about the Second Quantum Revolution. The aims are to promote quantum literacy and, in particular, to value from a cultural and educational perspective the Second Revolution. The dissertation is articulated in two parts. In the first, we unpack the Second Quantum Revolution from a cultural perspective and shed light on the main revolutionary aspects that are elevated to the rank of principles implemented in the design of a course for secondary school students, prospective and in-service teachers. The design process and the educational reconstruction of the activities are presented as well as the results of a pilot study conducted to investigate the impact of the approach on students' understanding and to gather feedback to refine and improve the instructional materials. The second part consists of the exploration of the Second Quantum Revolution as a context to introduce some basic concepts of quantum physics. We present the results of an implementation with secondary school students to investigate if and to what extent external representations could play any role to promote students’ understanding and acceptance of quantum physics as a personal reliable description of the world

    Coexistence of multiuser entanglement distribution and classical light in optical fiber network with a semiconductor chip

    Full text link
    Building communication links among multiple users in a scalable and robust way is a key objective in achieving large-scale quantum networks. In realistic scenario, noise from the coexisting classical light is inevitable and can ultimately disrupt the entanglement. The previous significant fully connected multiuser entanglement distribution experiments are conducted using dark fiber links and there is no explicit relation between the entanglement degradations induced by classical noise and its error rate. Here we fabricate a semiconductor chip with a high figure-of-merit modal overlap to directly generate broadband polarization entanglement. Our monolithic source maintains polarization entanglement fidelity above 96% for 42 nm bandwidth with a brightness of 1.2*10^7 Hz/mW. We perform a continuously working quantum entanglement distribution among three users coexisting with classical light. Under finite-key analysis, we establish secure keys and enable images encryption as well as quantum secret sharing between users. Our work paves the way for practical multiparty quantum communication with integrated photonic architecture compatible with real-world fiber optical communication network

    2017 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Eleventh Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1011/thumbnail.jp

    Envisioning the Future of Cyber Security in Post-Quantum Era: A Survey on PQ Standardization, Applications, Challenges and Opportunities

    Full text link
    The rise of quantum computers exposes vulnerabilities in current public key cryptographic protocols, necessitating the development of secure post-quantum (PQ) schemes. Hence, we conduct a comprehensive study on various PQ approaches, covering the constructional design, structural vulnerabilities, and offer security assessments, implementation evaluations, and a particular focus on side-channel attacks. We analyze global standardization processes, evaluate their metrics in relation to real-world applications, and primarily focus on standardized PQ schemes, selected additional signature competition candidates, and PQ-secure cutting-edge schemes beyond standardization. Finally, we present visions and potential future directions for a seamless transition to the PQ era
    • …
    corecore