3 research outputs found

    Improved TDNNs using Deep Kernels and Frequency Dependent Grid-RNNs

    Full text link
    Time delay neural networks (TDNNs) are an effective acoustic model for large vocabulary speech recognition. The strength of the model can be attributed to its ability to effectively model long temporal contexts. However, current TDNN models are relatively shallow, which limits the modelling capability. This paper proposes a method of increasing the network depth by deepening the kernel used in the TDNN temporal convolutions. The best performing kernel consists of three fully connected layers with a residual (ResNet) connection from the output of the first to the output of the third. The addition of spectro-temporal processing as the input to the TDNN in the form of a convolutional neural network (CNN) and a newly designed Grid-RNN was investigated. The Grid-RNN strongly outperforms a CNN if different sets of parameters for different frequency bands are used and can be further enhanced by using a bi-directional Grid-RNN. Experiments using the multi-genre broadcast (MGB3) English data (275h) show that deep kernel TDNNs reduces the word error rate (WER) by 6% relative and when combined with the frequency dependent Grid-RNN gives a relative WER reduction of 9%.Comment: 5 pages, 3 figures, 2 tables, to appear in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018

    Layer Trajectory LSTM

    Full text link
    It is popular to stack LSTM layers to get better modeling power, especially when large amount of training data is available. However, an LSTM-RNN with too many vanilla LSTM layers is very hard to train and there still exists the gradient vanishing issue if the network goes too deep. This issue can be partially solved by adding skip connections between layers, such as residual LSTM. In this paper, we propose a layer trajectory LSTM (ltLSTM) which builds a layer-LSTM using all the layer outputs from a standard multi-layer time-LSTM. This layer-LSTM scans the outputs from time-LSTMs, and uses the summarized layer trajectory information for final senone classification. The forward-propagation of time-LSTM and layer-LSTM can be handled in two separate threads in parallel so that the network computation time is the same as the standard time-LSTM. With a layer-LSTM running through layers, a gated path is provided from the output layer to the bottom layer, alleviating the gradient vanishing issue. Trained with 30 thousand hours of EN-US Microsoft internal data, the proposed ltLSTM performed significantly better than the standard multi-layer LSTM and residual LSTM, with up to 9.0% relative word error rate reduction across different tasks.Comment: Accepted at Interspeech 2018. Note the computational cost in Table 2 in the original Interspeech publication was doubled. Please refer this publication for the right computational cos

    Recent Progresses in Deep Learning based Acoustic Models (Updated)

    Full text link
    In this paper, we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques. We first discuss acoustic models that can effectively exploit variable-length contextual information, such as recurrent neural networks (RNNs), convolutional neural networks (CNNs), and their various combination with other models. We then describe acoustic models that are optimized end-to-end with emphasis on feature representations learned jointly with rest of the system, the connectionist temporal classification (CTC) criterion, and the attention-based sequence-to-sequence model. We further illustrate robustness issues in speech recognition systems, and discuss acoustic model adaptation, speech enhancement and separation, and robust training strategies. We also cover modeling techniques that lead to more efficient decoding and discuss possible future directions in acoustic model research.Comment: This is an updated version with latest literature until ICASSP2018 of the paper: Dong Yu and Jinyu Li, "Recent Progresses in Deep Learning based Acoustic Models," vol.4, no.3, IEEE/CAA Journal of Automatica Sinica, 201
    corecore