189 research outputs found

    Perception-Based Tactile Soft Keyboard for the Touchscreen of Tablets

    Get PDF

    The cockpit for the 21st century

    Get PDF
    Interactive surfaces are a growing trend in many domains. As one possible manifestation of Mark Weiser’s vision of ubiquitous and disappearing computers in everywhere objects, we see touchsensitive screens in many kinds of devices, such as smartphones, tablet computers and interactive tabletops. More advanced concepts of these have been an active research topic for many years. This has also influenced automotive cockpit development: concept cars and recent market releases show integrated touchscreens, growing in size. To meet the increasing information and interaction needs, interactive surfaces offer context-dependent functionality in combination with a direct input paradigm. However, interfaces in the car need to be operable while driving. Distraction, especially visual distraction from the driving task, can lead to critical situations if the sum of attentional demand emerging from both primary and secondary task overextends the available resources. So far, a touchscreen requires a lot of visual attention since its flat surface does not provide any haptic feedback. There have been approaches to make direct touch interaction accessible while driving for simple tasks. Outside the automotive domain, for example in office environments, concepts for sophisticated handling of large displays have already been introduced. Moreover, technological advances lead to new characteristics for interactive surfaces by enabling arbitrary surface shapes. In cars, two main characteristics for upcoming interactive surfaces are largeness and shape. On the one hand, spatial extension is not only increasing through larger displays, but also by taking objects in the surrounding into account for interaction. On the other hand, the flatness inherent in current screens can be overcome by upcoming technologies, and interactive surfaces can therefore provide haptically distinguishable surfaces. This thesis describes the systematic exploration of large and shaped interactive surfaces and analyzes their potential for interaction while driving. Therefore, different prototypes for each characteristic have been developed and evaluated in test settings suitable for their maturity level. Those prototypes were used to obtain subjective user feedback and objective data, to investigate effects on driving and glance behavior as well as usability and user experience. As a contribution, this thesis provides an analysis of the development of interactive surfaces in the car. Two characteristics, largeness and shape, are identified that can improve the interaction compared to conventional touchscreens. The presented studies show that large interactive surfaces can provide new and improved ways of interaction both in driver-only and driver-passenger situations. Furthermore, studies indicate a positive effect on visual distraction when additional static haptic feedback is provided by shaped interactive surfaces. Overall, various, non-exclusively applicable, interaction concepts prove the potential of interactive surfaces for the use in automotive cockpits, which is expected to be beneficial also in further environments where visual attention needs to be focused on additional tasks.Der Einsatz von interaktiven Oberflächen weitet sich mehr und mehr auf die unterschiedlichsten Lebensbereiche aus. Damit sind sie eine mögliche Ausprägung von Mark Weisers Vision der allgegenwärtigen Computer, die aus unserer direkten Wahrnehmung verschwinden. Bei einer Vielzahl von technischen Geräten des täglichen Lebens, wie Smartphones, Tablets oder interaktiven Tischen, sind berührungsempfindliche Oberflächen bereits heute in Benutzung. Schon seit vielen Jahren arbeiten Forscher an einer Weiterentwicklung der Technik, um ihre Vorteile auch in anderen Bereichen, wie beispielsweise der Interaktion zwischen Mensch und Automobil, nutzbar zu machen. Und das mit Erfolg: Interaktive Benutzeroberflächen werden mittlerweile serienmäßig in vielen Fahrzeugen eingesetzt. Der Einbau von immer größeren, in das Cockpit integrierten Touchscreens in Konzeptfahrzeuge zeigt, dass sich diese Entwicklung weiter in vollem Gange befindet. Interaktive Oberflächen ermöglichen das flexible Anzeigen von kontextsensitiven Inhalten und machen eine direkte Interaktion mit den Bildschirminhalten möglich. Auf diese Weise erfüllen sie die sich wandelnden Informations- und Interaktionsbedürfnisse in besonderem Maße. Beim Einsatz von Bedienschnittstellen im Fahrzeug ist die gefahrlose Benutzbarkeit während der Fahrt von besonderer Bedeutung. Insbesondere visuelle Ablenkung von der Fahraufgabe kann zu kritischen Situationen führen, wenn Primär- und Sekundäraufgaben mehr als die insgesamt verfügbare Aufmerksamkeit des Fahrers beanspruchen. Herkömmliche Touchscreens stellen dem Fahrer bisher lediglich eine flache Oberfläche bereit, die keinerlei haptische Rückmeldung bietet, weshalb deren Bedienung besonders viel visuelle Aufmerksamkeit erfordert. Verschiedene Ansätze ermöglichen dem Fahrer, direkte Touchinteraktion für einfache Aufgaben während der Fahrt zu nutzen. Außerhalb der Automobilindustrie, zum Beispiel für Büroarbeitsplätze, wurden bereits verschiedene Konzepte für eine komplexere Bedienung großer Bildschirme vorgestellt. Darüber hinaus führt der technologische Fortschritt zu neuen möglichen Ausprägungen interaktiver Oberflächen und erlaubt, diese beliebig zu formen. Für die nächste Generation von interaktiven Oberflächen im Fahrzeug wird vor allem an der Modifikation der Kategorien Größe und Form gearbeitet. Die Bedienschnittstelle wird nicht nur durch größere Bildschirme erweitert, sondern auch dadurch, dass Objekte wie Dekorleisten in die Interaktion einbezogen werden können. Andererseits heben aktuelle Technologieentwicklungen die Restriktion auf flache Oberflächen auf, so dass Touchscreens künftig ertastbare Strukturen aufweisen können. Diese Dissertation beschreibt die systematische Untersuchung großer und nicht-flacher interaktiver Oberflächen und analysiert ihr Potential für die Interaktion während der Fahrt. Dazu wurden für jede Charakteristik verschiedene Prototypen entwickelt und in Testumgebungen entsprechend ihres Reifegrads evaluiert. Auf diese Weise konnten subjektives Nutzerfeedback und objektive Daten erhoben, und die Effekte auf Fahr- und Blickverhalten sowie Nutzbarkeit untersucht werden. Diese Dissertation leistet den Beitrag einer Analyse der Entwicklung von interaktiven Oberflächen im Automobilbereich. Weiterhin werden die Aspekte Größe und Form untersucht, um mit ihrer Hilfe die Interaktion im Vergleich zu herkömmlichen Touchscreens zu verbessern. Die durchgeführten Studien belegen, dass große Flächen neue und verbesserte Bedienmöglichkeiten bieten können. Außerdem zeigt sich ein positiver Effekt auf die visuelle Ablenkung, wenn zusätzliches statisches, haptisches Feedback durch nicht-flache Oberflächen bereitgestellt wird. Zusammenfassend zeigen verschiedene, untereinander kombinierbare Interaktionskonzepte das Potential interaktiver Oberflächen für den automotiven Einsatz. Zudem können die Ergebnisse auch in anderen Bereichen Anwendung finden, in denen visuelle Aufmerksamkeit für andere Aufgaben benötigt wird

    Understanding the effects of peripheral vision and muscle memory on in-vehicle touchscreen interactions

    Get PDF
    It is important to gain a better understanding of how drivers interact with in-vehicle touchscreens to help design interfaces to minimise “eyes off road” time. The study aimed to investigate the relative effects of two interaction mechanisms (peripheral vision - PV and muscle memory - MM) shown to be relevant to visual behaviour when driving, on the time to press different sized buttons (small 6x6cm, medium 10x10cm, large 14x14cm) on an in-vehicle touchscreen. Twenty-five participants took part in a driving simulator study. They were presented with a single, white, square button on the touchscreen on 24 successive trials. For MM conditions, participants wore a pair of glasses that blocked their peripheral vision and for PV conditions they were asked to keep their focus on the vehicle in front throughout. Results showed that task time gradually decreased for the trials when participants could only use MM. However, overall task time for MM conditions were significantly higher than for those in which PV was utilised, and participants rated the use of MM to be more difficult than PV. In contrast, results suggest that for interfaces that utilise peripheral visual processing the learning effect is not evident and operation times are constant over time. These findings indicate that in-vehicle touch screens should be designed to utilise peripheral vision for making simple button selections with reduced visual demand

    Understanding the effects of peripheral vision and muscle memory on in-vehicle touchscreen interactions

    Get PDF
    It is important to gain a better understanding of how drivers interact with in-vehicle touchscreens to help design interfaces to minimise “eyes off road” time. The study aimed to investigate the relative effects of two interaction mechanisms (peripheral vision - PV and muscle memory - MM) shown to be relevant to visual behaviour when driving, on the time to press different sized buttons (small 6x6cm, medium 10x10cm, large 14x14cm) on an in-vehicle touchscreen. Twenty-five participants took part in a driving simulator study. They were presented with a single, white, square button on the touchscreen on 24 successive trials. For MM conditions, participants wore a pair of glasses that blocked their peripheral vision and for PV conditions they were asked to keep their focus on the vehicle in front throughout. Results showed that task time gradually decreased for the trials when participants could only use MM. However, overall task time for MM conditions were significantly higher than for those in which PV was utilised, and participants rated the use of MM to be more difficult than PV. In contrast, results suggest that for interfaces that utilise peripheral visual processing the learning effect is not evident and operation times are constant over time. These findings indicate that in-vehicle touch screens should be designed to utilise peripheral vision for making simple button selections with reduced visual demand

    Extending mobile touchscreen interaction

    Get PDF
    Touchscreens have become a de facto interface for mobile devices, and are penetrating further beyond their core application domain of smartphones. This work presents a design space for extending touchscreen interaction, to which new solutions may be mapped. Specific touchscreen enhancements in the domains of manual input, visual output and haptic feedback are explored and quantitative and experiental findings reported. Particular areas covered are unintentional interaction, screen locking, stereoscopic displays and picoprojection. In addition, the novel interaction approaches of finger identification and onscreen physical guides are also explored. The use of touchscreens in the domains of car dashboards and smart handbags are evaluated as domain specific use cases. This work draws together solutions from the broad area of mobile touchscreen interaction. Fruitful directions for future research are identified, and information is provided for future researchers addressing those topics.Kosketusnäytöistä on muodostunut mobiililaitteiden pääasiallinen käyttöliittymä, ja ne ovat levinneet alkuperäiseltä ydinsovellusalueeltaan, matkapuhelimista, myös muihin laitteisiin. Työssä tutkitaan uusia vuorovaikutuksen, visualisoinnin ja käyttöliittymäpalautteen keinoja, jotka laajentavat perinteistä kosketusnäytön avulla tapahtuvaa vuorovaikutusta. Näihin liittyen väitöskirjassa esitetään sekä kvantitatiivisia tuloksia että uutta kartoittavia löydöksiä. Erityisesti työ tarkastelee tahatonta kosketusnäytön käyttöä, kosketusnäytön lukitusta, stereoskooppisia kosketusnäyttöjä ja pikoprojektoreiden hyödyntämistä. Lisäksi kartoitetaan uusia vuorovaikutustapoja, jotka liittyvät sormien identifioimiseen vuorovaikutuksen yhteydessä, ja fyysisiin, liikettä ohjaaviin rakenteisiin kosketusnäytöllä. Kosketusnäytön käyttöä autossa sekä osana älykästä käsilaukkua tarkastellaan esimerkkeinä käyttökonteksteista. Väitöskirjassa esitetään vuorovaikutussuunnittelun viitekehys, joka laajentaa kosketusnäyttöjen kautta tapahtuvaa vuorovaikutusta mobiililaitteen kanssa, ja johon työssä esitellyt, uudet vuorovaikutustavat voidaan sijoittaa. Väitöskirja yhdistää kosketusnäyttöihin liittyviä käyttöliittymäsuunnittelun ratkaisuja laajalta alueelta. Työ esittelee potentiaalisia suuntaviivoja tulevaisuuden tutkimuksille ja tuo uutta tutkimustietoa, jota mobiililaitteiden vuorovaikutuksen tutkijat ja käyttöliittymäsuunnittelijat voivat hyödyntää

    Extending mobile touchscreen interaction

    Get PDF
    Touchscreens have become a de facto interface for mobile devices, and are penetrating further beyond their core application domain of smartphones. This work presents a design space for extending touchscreen interaction, to which new solutions may be mapped. Specific touchscreen enhancements in the domains of manual input, visual output and haptic feedback are explored and quantitative and experiental findings reported. Particular areas covered are unintentional interaction, screen locking, stereoscopic displays and picoprojection. In addition, the novel interaction approaches of finger identification and onscreen physical guides are also explored. The use of touchscreens in the domains of car dashboards and smart handbags are evaluated as domain specific use cases. This work draws together solutions from the broad area of mobile touchscreen interaction. Fruitful directions for future research are identified, and information is provided for future researchers addressing those topics.Kosketusnäytöistä on muodostunut mobiililaitteiden pääasiallinen käyttöliittymä, ja ne ovat levinneet alkuperäiseltä ydinsovellusalueeltaan, matkapuhelimista, myös muihin laitteisiin. Työssä tutkitaan uusia vuorovaikutuksen, visualisoinnin ja käyttöliittymäpalautteen keinoja, jotka laajentavat perinteistä kosketusnäytön avulla tapahtuvaa vuorovaikutusta. Näihin liittyen väitöskirjassa esitetään sekä kvantitatiivisia tuloksia että uutta kartoittavia löydöksiä. Erityisesti työ tarkastelee tahatonta kosketusnäytön käyttöä, kosketusnäytön lukitusta, stereoskooppisia kosketusnäyttöjä ja pikoprojektoreiden hyödyntämistä. Lisäksi kartoitetaan uusia vuorovaikutustapoja, jotka liittyvät sormien identifioimiseen vuorovaikutuksen yhteydessä, ja fyysisiin, liikettä ohjaaviin rakenteisiin kosketusnäytöllä. Kosketusnäytön käyttöä autossa sekä osana älykästä käsilaukkua tarkastellaan esimerkkeinä käyttökonteksteista. Väitöskirjassa esitetään vuorovaikutussuunnittelun viitekehys, joka laajentaa kosketusnäyttöjen kautta tapahtuvaa vuorovaikutusta mobiililaitteen kanssa, ja johon työssä esitellyt, uudet vuorovaikutustavat voidaan sijoittaa. Väitöskirja yhdistää kosketusnäyttöihin liittyviä käyttöliittymäsuunnittelun ratkaisuja laajalta alueelta. Työ esittelee potentiaalisia suuntaviivoja tulevaisuuden tutkimuksille ja tuo uutta tutkimustietoa, jota mobiililaitteiden vuorovaikutuksen tutkijat ja käyttöliittymäsuunnittelijat voivat hyödyntää

    Eignung von virtueller Physik und Touch-Gesten in Touchscreen-Benutzerschnittstellen für kritische Aufgaben

    Get PDF
    The goal of this reasearch was to examine if modern touch screen interaction concepts that are established on consumer electronic devices like smartphones can be used in time-critical and safety-critical use cases like for machine control or healthcare appliances. Several prevalent interaction concepts with and without touch gestures and virtual physics were tested experimentally in common use cases to assess their efficiency, error rate and user satisfaction during task completion. Based on the results, design recommendations for list scrolling and horizontal dialog navigation are given.Das Ziel dieser Forschungsarbeit war es zu untersuchen, ob moderne Touchscreen-Interaktionskonzepte, die auf Consumer-Electronic-Geräten wie Smartphones etabliert sind, für zeit- und sicherheitskritische Anwendungsfälle wie Maschinensteuerung und Medizingeräte geeignet sind. Mehrere gebräuchliche Interaktionskonzepte mit und ohne Touch-Gesten und virtueller Physik wurden in häufigen Anwendungsfällen experimentell auf ihre Effizienz, Fehlerrate und Nutzerzufriedenheit bei der Aufgabenlösung untersucht. Basierend auf den Resultaten werden Empfehlungen für das Scrollen in Listen und dem horizontalen Navigieren in mehrseitigen Software-Dialogen ausgesprochen

    Designing Haptic Clues for Touchscreen Kiosks

    Get PDF
    Most interactive touchscreen kiosks are a challenge to accessibility: if graphics and sound fail in communication, the interaction process halts. In such a case, turning to the only remaining environmentally suited sense - the touch - is an intuitive option. To reinforce the interaction with interactive touchscreen kiosks it is possible to add haptic (touchable) feedback into the features of the device. The range of touchscreen-suited haptic technologies already enables some touch feedback from touchscreen surfaces and significant leaps still forward are being made at a constant rate. Due to this development it is relevant to review the human-centred factors affecting the design of haptic touchscreen in public kiosks. This thesis offers an overview for designing haptic clues for touchscreen kiosks. It emphasizes context sensitivity and the meaningfulness and communicability of different haptic design variants. As the main contribution, this thesis collects together the important considerations for the conscious design of haptic features in interactive kiosks and offers points of multimodal design considerations for designers intending to enrich their touchscreen interaction with haptic features

    Modern Applications of Electrostatics and Dielectrics

    Get PDF
    Electrostatics and dielectric materials have important applications in modern society. As such, they require improved characteristics. More and more equipment needs to operate at high frequency, high voltage, high temperature, and other harsh conditions. This book presents an overview of modern applications of electrostatics and dielectrics as well as research progress in the field
    corecore