10,843 research outputs found

    Pairwise Confusion for Fine-Grained Visual Classification

    Full text link
    Fine-Grained Visual Classification (FGVC) datasets contain small sample sizes, along with significant intra-class variation and inter-class similarity. While prior work has addressed intra-class variation using localization and segmentation techniques, inter-class similarity may also affect feature learning and reduce classification performance. In this work, we address this problem using a novel optimization procedure for the end-to-end neural network training on FGVC tasks. Our procedure, called Pairwise Confusion (PC) reduces overfitting by intentionally {introducing confusion} in the activations. With PC regularization, we obtain state-of-the-art performance on six of the most widely-used FGVC datasets and demonstrate improved localization ability. {PC} is easy to implement, does not need excessive hyperparameter tuning during training, and does not add significant overhead during test time.Comment: Camera-Ready version for ECCV 201

    Simultaneous Feature and Body-Part Learning for Real-Time Robot Awareness of Human Behaviors

    Full text link
    Robot awareness of human actions is an essential research problem in robotics with many important real-world applications, including human-robot collaboration and teaming. Over the past few years, depth sensors have become a standard device widely used by intelligent robots for 3D perception, which can also offer human skeletal data in 3D space. Several methods based on skeletal data were designed to enable robot awareness of human actions with satisfactory accuracy. However, previous methods treated all body parts and features equally important, without the capability to identify discriminative body parts and features. In this paper, we propose a novel simultaneous Feature And Body-part Learning (FABL) approach that simultaneously identifies discriminative body parts and features, and efficiently integrates all available information together to enable real-time robot awareness of human behaviors. We formulate FABL as a regression-like optimization problem with structured sparsity-inducing norms to model interrelationships of body parts and features. We also develop an optimization algorithm to solve the formulated problem, which possesses a theoretical guarantee to find the optimal solution. To evaluate FABL, three experiments were performed using public benchmark datasets, including the MSR Action3D and CAD-60 datasets, as well as a Baxter robot in practical assistive living applications. Experimental results show that our FABL approach obtains a high recognition accuracy with a processing speed of the order-of-magnitude of 10e4 Hz, which makes FABL a promising method to enable real-time robot awareness of human behaviors in practical robotics applications.Comment: 8 pages, 6 figures, accepted by ICRA'1

    SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification

    Full text link
    Automatic classification of epileptic seizure types in electroencephalograms (EEGs) data can enable more precise diagnosis and efficient management of the disease. This task is challenging due to factors such as low signal-to-noise ratios, signal artefacts, high variance in seizure semiology among epileptic patients, and limited availability of clinical data. To overcome these challenges, in this paper, we present SeizureNet, a deep learning framework which learns multi-spectral feature embeddings using an ensemble architecture for cross-patient seizure type classification. We used the recently released TUH EEG Seizure Corpus (V1.4.0 and V1.5.2) to evaluate the performance of SeizureNet. Experiments show that SeizureNet can reach a weighted F1 score of up to 0.94 for seizure-wise cross validation and 0.59 for patient-wise cross validation for scalp EEG based multi-class seizure type classification. We also show that the high-level feature embeddings learnt by SeizureNet considerably improve the accuracy of smaller networks through knowledge distillation for applications with low-memory constraints

    Teaching Categories to Human Learners with Visual Explanations

    Get PDF
    We study the problem of computer-assisted teaching with explanations. Conventional approaches for machine teaching typically only provide feedback at the instance level e.g., the category or label of the instance. However, it is intuitive that clear explanations from a knowledgeable teacher can significantly improve a student's ability to learn a new concept. To address these existing limitations, we propose a teaching framework that provides interpretable explanations as feedback and models how the learner incorporates this additional information. In the case of images, we show that we can automatically generate explanations that highlight the parts of the image that are responsible for the class label. Experiments on human learners illustrate that, on average, participants achieve better test set performance on challenging categorization tasks when taught with our interpretable approach compared to existing methods
    • …
    corecore