887 research outputs found

    A Margin-based MLE for Crowdsourced Partial Ranking

    Full text link
    A preference order or ranking aggregated from pairwise comparison data is commonly understood as a strict total order. However, in real-world scenarios, some items are intrinsically ambiguous in comparisons, which may very well be an inherent uncertainty of the data. In this case, the conventional total order ranking can not capture such uncertainty with mere global ranking or utility scores. In this paper, we are specifically interested in the recent surge in crowdsourcing applications to predict partial but more accurate (i.e., making less incorrect statements) orders rather than complete ones. To do so, we propose a novel framework to learn some probabilistic models of partial orders as a \emph{margin-based Maximum Likelihood Estimate} (MLE) method. We prove that the induced MLE is a joint convex optimization problem with respect to all the parameters, including the global ranking scores and margin parameter. Moreover, three kinds of generalized linear models are studied, including the basic uniform model, Bradley-Terry model, and Thurstone-Mosteller model, equipped with some theoretical analysis on FDR and Power control for the proposed methods. The validity of these models are supported by experiments with both simulated and real-world datasets, which shows that the proposed models exhibit improvements compared with traditional state-of-the-art algorithms.Comment: 9 pages, Accepted by ACM Multimedia 2018 as a full pape

    Towards autonomous decision-making: A probabilistic model for learning multi-user preferences

    Get PDF
    Information systems have revolutionized the provisioning of decision-relevant information, and decision support tools have improved human decisions in many domains. Autonomous decision- making, on the other hand, remains hampered by systems’ inability to faithfully capture human preferences. We present a computational preference model that learns unobtrusively from lim- ited data by pooling observations across like-minded users. Our model quantifies the certainty of its own predictions as input to autonomous decision-making tasks, and it infers probabilistic segments based on user choices in the process. We evaluate our model on real-world preference data collected on a commercial crowdsourcing platform, and we find that it outperforms both individual and population-level estimates in terms of predictive accuracy and the informative- ness of its certainty estimates. Our work takes an important step toward systems that act autonomously on their users’ behalf
    • …
    corecore