9,726 research outputs found

    Key technologies for safe and autonomous drones

    Get PDF
    Drones/UAVs are able to perform air operations that are very difficult to be performed by manned aircrafts. In addition, drones' usage brings significant economic savings and environmental benefits, while reducing risks to human life. In this paper, we present key technologies that enable development of drone systems. The technologies are identified based on the usages of drones (driven by COMP4DRONES project use cases). These technologies are grouped into four categories: U-space capabilities, system functions, payloads, and tools. Also, we present the contributions of the COMP4DRONES project to improve existing technologies. These contributions aim to ease drones’ customization, and enable their safe operation.This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826610. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia, Netherlands. The total project budget is 28,590,748.75 EUR (excluding ESIF partners), while the requested grant is 7,983,731.61 EUR to ECSEL JU, and 8,874,523.84 EUR of National and ESIF Funding. The project has been started on 1st October 2019

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    Corporate Social Responsibility: the institutionalization of ESG

    Get PDF
    Understanding the impact of Corporate Social Responsibility (CSR) on firm performance as it relates to industries reliant on technological innovation is a complex and perpetually evolving challenge. To thoroughly investigate this topic, this dissertation will adopt an economics-based structure to address three primary hypotheses. This structure allows for each hypothesis to essentially be a standalone empirical paper, unified by an overall analysis of the nature of impact that ESG has on firm performance. The first hypothesis explores the evolution of CSR to the modern quantified iteration of ESG has led to the institutionalization and standardization of the CSR concept. The second hypothesis fills gaps in existing literature testing the relationship between firm performance and ESG by finding that the relationship is significantly positive in long-term, strategic metrics (ROA and ROIC) and that there is no correlation in short-term metrics (ROE and ROS). Finally, the third hypothesis states that if a firm has a long-term strategic ESG plan, as proxied by the publication of CSR reports, then it is more resilience to damage from controversies. This is supported by the finding that pro-ESG firms consistently fared better than their counterparts in both financial and ESG performance, even in the event of a controversy. However, firms with consistent reporting are also held to a higher standard than their nonreporting peers, suggesting a higher risk and higher reward dynamic. These findings support the theory of good management, in that long-term strategic planning is both immediately economically beneficial and serves as a means of risk management and social impact mitigation. Overall, this contributes to the literature by fillings gaps in the nature of impact that ESG has on firm performance, particularly from a management perspective

    Reinforcement Learning-based User-centric Handover Decision-making in 5G Vehicular Networks

    Get PDF
    The advancement of 5G technologies and Vehicular Networks open a new paradigm for Intelligent Transportation Systems (ITS) in safety and infotainment services in urban and highway scenarios. Connected vehicles are vital for enabling massive data sharing and supporting such services. Consequently, a stable connection is compulsory to transmit data across the network successfully. The new 5G technology introduces more bandwidth, stability, and reliability, but it faces a low communication range, suffering from more frequent handovers and connection drops. The shift from the base station-centric view to the user-centric view helps to cope with the smaller communication range and ultra-density of 5G networks. In this thesis, we propose a series of strategies to improve connection stability through efficient handover decision-making. First, a modified probabilistic approach, M-FiVH, aimed at reducing 5G handovers and enhancing network stability. Later, an adaptive learning approach employed Connectivity-oriented SARSA Reinforcement Learning (CO-SRL) for user-centric Virtual Cell (VC) management to enable efficient handover (HO) decisions. Following that, a user-centric Factor-distinct SARSA Reinforcement Learning (FD-SRL) approach combines time series data-oriented LSTM and adaptive SRL for VC and HO management by considering both historical and real-time data. The random direction of vehicular movement, high mobility, network load, uncertain road traffic situation, and signal strength from cellular transmission towers vary from time to time and cannot always be predicted. Our proposed approaches maintain stable connections by reducing the number of HOs by selecting the appropriate size of VCs and HO management. A series of improvements demonstrated through realistic simulations showed that M-FiVH, CO-SRL, and FD-SRL were successful in reducing the number of HOs and the average cumulative HO time. We provide an analysis and comparison of several approaches and demonstrate our proposed approaches perform better in terms of network connectivity

    A Decision Support System for Economic Viability and Environmental Impact Assessment of Vertical Farms

    Get PDF
    Vertical farming (VF) is the practice of growing crops or animals using the vertical dimension via multi-tier racks or vertically inclined surfaces. In this thesis, I focus on the emerging industry of plant-specific VF. Vertical plant farming (VPF) is a promising and relatively novel practice that can be conducted in buildings with environmental control and artificial lighting. However, the nascent sector has experienced challenges in economic viability, standardisation, and environmental sustainability. Practitioners and academics call for a comprehensive financial analysis of VPF, but efforts are stifled by a lack of valid and available data. A review of economic estimation and horticultural software identifies a need for a decision support system (DSS) that facilitates risk-empowered business planning for vertical farmers. This thesis proposes an open-source DSS framework to evaluate business sustainability through financial risk and environmental impact assessments. Data from the literature, alongside lessons learned from industry practitioners, would be centralised in the proposed DSS using imprecise data techniques. These techniques have been applied in engineering but are seldom used in financial forecasting. This could benefit complex sectors which only have scarce data to predict business viability. To begin the execution of the DSS framework, VPF practitioners were interviewed using a mixed-methods approach. Learnings from over 19 shuttered and operational VPF projects provide insights into the barriers inhibiting scalability and identifying risks to form a risk taxonomy. Labour was the most commonly reported top challenge. Therefore, research was conducted to explore lean principles to improve productivity. A probabilistic model representing a spectrum of variables and their associated uncertainty was built according to the DSS framework to evaluate the financial risk for VF projects. This enabled flexible computation without precise production or financial data to improve economic estimation accuracy. The model assessed two VPF cases (one in the UK and another in Japan), demonstrating the first risk and uncertainty quantification of VPF business models in the literature. The results highlighted measures to improve economic viability and the viability of the UK and Japan case. The environmental impact assessment model was developed, allowing VPF operators to evaluate their carbon footprint compared to traditional agriculture using life-cycle assessment. I explore strategies for net-zero carbon production through sensitivity analysis. Renewable energies, especially solar, geothermal, and tidal power, show promise for reducing the carbon emissions of indoor VPF. Results show that renewably-powered VPF can reduce carbon emissions compared to field-based agriculture when considering the land-use change. The drivers for DSS adoption have been researched, showing a pathway of compliance and design thinking to overcome the ‘problem of implementation’ and enable commercialisation. Further work is suggested to standardise VF equipment, collect benchmarking data, and characterise risks. This work will reduce risk and uncertainty and accelerate the sector’s emergence

    Using Contactless Mobile Payment in the Vietnamese Restaurant Industry

    Get PDF
    This study develops a critical understanding of Contactless Mobile Payment (CMP) in the context of consumer behaviour and explores its use in the Vietnamese restaurant industry. An online survey was used to collect the data (n=153) from Vietnamese consumers. Data analysis was conducted with the use of SPSS and AMOS software. A Confirmatory Factor Analysis (CFA) in conjunction with Structural Equation Modelling (SEM) were employed to explore consumer perceptions regarding the use of CMP. The findings indicate that consumers find CMP a fast and convenient way to make transactions in Vietnamese restaurants. The findings also indicate the importance of ease of use and security. The study contributes to the understanding of consumer behaviour in regard to technology in the service industries context

    Defining Service Level Agreements in Serverless Computing

    Get PDF
    The emergence of serverless computing has brought significant advancements to the delivery of computing resources to cloud users. With the abstraction of infrastructure, ecosystem, and execution environments, users could focus on their code while relying on the cloud provider to manage the abstracted layers. In addition, desirable features such as autoscaling and high availability became a provider’s responsibility and can be adopted by the user\u27s application at no extra overhead. Despite such advancements, significant challenges must be overcome as applications transition from monolithic stand-alone deployments to the ephemeral and stateless microservice model of serverless computing. These challenges pertain to the uniqueness of the conceptual and implementation models of serverless computing. One of the notable challenges is the complexity of defining Service Level Agreements (SLA) for serverless functions. As the serverless model shifts the administration of resources, ecosystem, and execution layers to the provider, users become mere consumers of the provider’s abstracted platform with no insight into its performance. Suboptimal conditions of the abstracted layers are not visible to the end-user who has no means to assess their performance. Thus, SLA in serverless computing must take into consideration the unique abstraction of its model. This work investigates the Service Level Agreement (SLA) modeling of serverless functions\u27 and serverless chains’ executions. We highlight how serverless SLA fundamentally differs from earlier cloud delivery models. We then propose an approach to define SLA for serverless functions by utilizing resource utilization fingerprints for functions\u27 executions and a method to assess if executions adhere to that SLA. We evaluate the approach’s accuracy in detecting SLA violations for a broad range of serverless application categories. Our validation results illustrate a high accuracy in detecting SLA violations resulting from resource contentions and provider’s ecosystem degradations. We conclude by presenting the empirical validation of our proposed approach, which could detect Execution-SLA violations with accuracy up to 99%

    Annals [...].

    Get PDF
    Pedometrics: innovation in tropics; Legacy data: how turn it useful?; Advances in soil sensing; Pedometric guidelines to systematic soil surveys.Evento online. Coordenado por: Waldir de Carvalho Junior, Helena Saraiva Koenow Pinheiro, Ricardo Simão Diniz Dalmolin

    Simulation and Optimization of Scheduling Policies in Dynamic Stochastic Resource-Constrained Multi-Project Environments

    Get PDF
    The goal of the Project Management is to organise project schedules to complete projects before their completion dates, specified in their contract. When a project is beyond its completion date, organisations may lose the rewards from project completion as well as their organisational prestige. Project Management involves many uncertain factors such as unknown new project arrival dates and unreliable task duration predictions, which may affect project schedules that lead to delivery overruns. Successful Project Management could be done by considering these uncertainties. In this PhD study, we aim to create a more comprehensive model which considers a system where projects (of multiple types) arrive at random to the resource-constrained environment for which rewards for project delivery are impacted by fees for late project completion and tasks may complete sooner or later than expected task duration. In this thesis, we considered two extensions of the resource-constrained multi-project scheduling problem (RCMPSP) in dynamic environments. RCMPSP requires scheduling tasks of multiple projects simultaneously using a pool of limited renewable resources, and its goal usually is the shortest make-span or the highest profit. The first extension of RCMPSP is the dynamic resource-constrained multi-project scheduling problem. Dynamic in this problem refers that new projects arrive randomly during the ongoing project execution, which disturbs the existing project scheduling plan. The second extension of RCMPSP is the dynamic and stochastic resource-constrained multi-project scheduling problem. Dynamic and stochastic represent that both random new projects arrivals and stochastic task durations. In these problems, we assumed that projects generate rewards at their completion; completions later than a due date cause tardiness costs, and we seek to maximise average profits per unit time or the expected discounted long-run profit. We model these problems as infinite-horizon discrete-time Markov decision processes
    • …
    corecore