7 research outputs found

    A Multi-Kernel Multi-Code Polar Decoder Architecture

    Get PDF
    Polar codes have received increasing attention in the past decade, and have been selected for the next generation of wireless communication standard. Most research on polar codes has focused on codes constructed from a 2×22\times2 polarization matrix, called binary kernel: codes constructed from binary kernels have code lengths that are bound to powers of 22. A few recent works have proposed construction methods based on multiple kernels of different dimensions, not only binary ones, allowing code lengths different from powers of 22. In this work, we design and implement the first multi-kernel successive cancellation polar code decoder in literature. It can decode any code constructed with binary and ternary kernels: the architecture, sized for a maximum code length NmaxN_{max}, is fully flexible in terms of code length, code rate and kernel sequence. The decoder can achieve frequency of more than 11 GHz in 6565 nm CMOS technology, and a throughput of 615615 Mb/s. The area occupation ranges between 0.110.11 mm2^2 for Nmax=256N_{max}=256 and 2.012.01 mm2^2 for Nmax=4096N_{max}=4096. Implementation results show an unprecedented degree of flexibility: with Nmax=4096N_{max}=4096, up to 5555 code lengths can be decoded with the same hardware, along with any kernel sequence and code rate

    Implementation of a High-Throughput Fast-SSC Polar Decoder with Sequence Repetition Node

    Full text link
    Even though polar codes were adopted in the latest 5G cellular standard, they still have the fundamental problem of high decoding latency. Aiming at solving this problem, a fast simplified successive cancellation (Fast-SSC) decoder based on the new class of sequence repetition (SR) nodes has been proposed recently in \cite{sr2020} and has a lower required number of time steps than other existing Fast-SSC decoders in theory. This paper focuses on the hardware implementation of this SR node-based fast-SSC (SRFSC) decoder. The implementation results for a polar code with length 1024 and code rate 1/2 show that our implementation has a throughput of 505505 Mbps on an Altera Stratix IV FPGA, which is 17.9% higher with respect to the previous work.Comment: 6 pages, 6 figures. Accepted and to appear in IEEE International Workshop on Signal Processing Systems, Oct 2020 (SIPS2020). The latest version. arXiv admin note: text overlap with arXiv:2005.0439

    Wireless End-to-End Image Transmission System using Semantic Communications

    Full text link
    Semantic communication is considered the future of mobile communication, which aims to transmit data beyond Shannon's theorem of communications by transmitting the semantic meaning of the data rather than the bit-by-bit reconstruction of the data at the receiver's end. The semantic communication paradigm aims to bridge the gap of limited bandwidth problems in modern high-volume multimedia application content transmission. Integrating AI technologies with the 6G communications networks paved the way to develop semantic communication-based end-to-end communication systems. In this study, we have implemented a semantic communication-based end-to-end image transmission system, and we discuss potential design considerations in developing semantic communication systems in conjunction with physical channel characteristics. A Pre-trained GAN network is used at the receiver as the transmission task to reconstruct the realistic image based on the Semantic segmented image at the receiver input. The semantic segmentation task at the transmitter (encoder) and the GAN network at the receiver (decoder) is trained on a common knowledge base, the COCO-Stuff dataset. The research shows that the resource gain in the form of bandwidth saving is immense when transmitting the semantic segmentation map through the physical channel instead of the ground truth image in contrast to conventional communication systems. Furthermore, the research studies the effect of physical channel distortions and quantization noise on semantic communication-based multimedia content transmission.Comment: Accepted for IEEE Acces

    Statistical Tools and Methodologies for Ultrareliable Low-Latency Communications -- A Tutorial

    Full text link
    Ultra-reliable low-latency communication (URLLC) constitutes a key service class of the fifth generation and beyond cellular networks. Notably, designing and supporting URLLC poses a herculean task due to the fundamental need to identify and accurately characterize the underlying statistical models in which the system operates, e.g., interference statistics, channel conditions, and the behavior of protocols. In general, multi-layer end-to-end approaches considering all the potential delay and error sources and proper statistical tools and methodologies are inevitably required for providing strong reliability and latency guarantees. This paper contributes to the body of knowledge in the latter aspect by providing a tutorial on several statistical tools and methodologies that are useful for designing and analyzing URLLC systems. Specifically, we overview the frameworks related to i) reliability theory, ii) short packet communications, iii) inequalities, distribution bounds, and tail approximations, iv) rare events simulation, vi) queuing theory and information freshness, and v) large-scale tools such as stochastic geometry, clustering, compressed sensing, and mean-field games. Moreover, we often refer to prominent data-driven algorithms within the scope of the discussed tools/methodologies. Throughout the paper, we briefly review the state-of-the-art works using the addressed tools and methodologies, and their link to URLLC systems. Moreover, we discuss novel application examples focused on physical and medium access control layers. Finally, key research challenges and directions are highlighted to elucidate how URLLC analysis/design research may evolve in the coming years.Comment: Accepted in IEEE Proceedings of the IEEE. 40 pages, 20 figures, 11 table
    corecore