67 research outputs found

    Recently Developed Reduced Switch Multilevel Inverter for Renewable Energy Integration and Drives Application: Topologies, Comprehensive Analysis and Comparative Evaluation

    Get PDF
    Recently, multilevel inverters (MLIs) have gained lots of interest in industry and academia, as they are changing into a viable technology for numerous applications, such as renewable power conversion system and drives. For these high power and high/medium voltage applications, MLIs are widely used as one of the advanced power converter topologies. To produce high-quality output without the need for a large number of switches, development of reduced switch MLI (RS MLI) topologies has been a major focus of current research. Therefore, this review paper focuses on a number of recently developed MLIs used in various applications. To assist with advanced current research in this field and in the selection of suitable inverter for various applications, significant understanding on these topologies is clearly summarized based on the three categories, i.e., symmetrical, asymmetrical, and modified topologies. This review paper also includes a comparison based on important performance parameters, detailed technical challenges, current focus, and future development trends. By a suitable combination of switches, the MLI produces a staircase output with low harmonic distortion. For a better understanding of the working principle, a single-phase RS MLI topology is experimentally illustrated for different level generation using both fundamental and high switching frequency techniques which will help the readers to gain the utmost knowledge for advance research

    Current fed multilevel converters for high current power applications

    Get PDF
    Phd ThesisThe majority of the worldwide installed power inverters today are voltage source inverters followed by current source inverters where the concluding decision lies with the performance of the applications besides the usual economic reasons. Recent active development in the current source inverter areas has seen the emerging of various generalized multilevel current source inverter topologies analogous to the existing multilevel voltage source inverter families. To date, the multilevel current source inverter families have been classified principally by the physical appearance of their basic structures and also by the number of current sources employed. The existing multilevel current source inverter topologies are unpopular for present applications due to reasons such as big sizes, high control complexity and low reliability; which circumstances are often associated to massive component counts and multiple requirements of current sources. Therefore, this research has been focused on the single-phase single-source generalized multilevel current source inverter for this apparent advantage; where this thesis proposed a novel generalized multilevel current-source inverter topology with the lowest component utilization while employing just a single current source. In addition, the proposed topology can conveniently achieved dc current balance with a simple low frequency switching strategy for the five- and nine-level current outputs. From comparison analysis, the proposed topology has significantly less number of components employed compared to the nearest topology, which implies low implementation cost. The experimental results verify the characteristics and performances of the proposed topology acquired by computer simulations.ministry of education, Malaysia and also to my employer the University Malaysia Pahang (UMP) for the financial suppor

    New optimal PWM strategies for a VSI induction motor drive

    Get PDF
    The applications of robust squirrel-cage induction motors in variable speed inverter drive systems have increased considerably due to the availability of easily controlled semiconductor switching devices. One problem encountered in inverter drives is the non-sinusoidal nature of the supply voltage, which results in increased motor losses and harmful torque pulsations producing undesirable speed oscillations. The latter effects are negligible at high frequency operation, due to the damping effect of the rotor and load inertia. However, torque pulsations and speed ripple may be appreciable at low frequency, wore they may result in abnormal wear of gear-teeth or torsional shaft failure. Hence, in applications where constant or precise speed control is important, eg; machine tool, antenna positioning, traction drives etc., it is essential to establish a method for determining the magnitudes of these torque pulsations and speed ripple, as a first stage in minimizing or eliminating them. When a voltage source inverter is used in such applications, pulse width modulation (PWM) techniques are usually employed, whereby the quasi square waveshape is modulated so as to minimize or eliminate the low order harmonic voltage components and thereby reduce the torque pulsations. Recent investigations have shown that total elimination of low order components does not produce optimal efficiency or torque pulsations and speed ripple. minimization. This thesis describes new PWM strategies which does not rely on complete elimination of low order harmonics, but on controlling the magnitude and phase of these components to achieve a smooth rotor motion. Initially, a mathematical model for the inverter/induction motor drive was developed, based on numerical integration of the system differential equations. The changing topology of the inverter bridge was simulated using tensor techniques. Then an analytical method, based on harmonic equivalent circuit analysis was proposed for calculating the induction motor pulsating torque components under steady-state operating conditions, in terms of stator and rotor current harmonics. The accuracy of this method was verified by comparing its results with those obtained from the mathematical model developed earlier. This provided an extremely rapid, numerically stable and efficient means for evaluating harmonic current and torque components with balanced non-sinusoidal applied voltages. This method was then used to formulate the torque performance function necessary to determine the new optimal PWM switching strategies. Throughout the work, the predicted performance was extensively validated and supported by practical results obtained from an experimental rig specifically designed to drive the machine under different PWM techniques

    Modulation and control strategies for multilevel five-phase open-end winding drives

    Get PDF
    Industrial and automotive trends clearly demonstrate an increased interest in medium- and high-power variable speed drives. Despite constant progress in the technology, the semiconductor characteristics are still the bottleneck in drive designs, due to their limitations to block high voltage (several kilovolts) and conduct high current (several hundreds of amperes per-phase). For this reason and numerous other advantages, solutions based on multilevel inverters and multiphase machines are considered in recent years. The open-end winding drives are an alternative approach for drives construction. This thesis investigates carrier based pulse width modulation schemes for five-phase open-end winding drives. Two drive topologies, with isolated dc-links of two inverters, are considered. The first one consists of two two-level inverters and a five-phase machine. The second topology utilises one three- and one two-level five-phase inverter. It is shown that the same drive structure can produce a different number of phase voltage levels, when different dc-link voltages of two inverters are in use. Hence, dc-link voltage ratio is considered as an additional degree of freedom. An open-end winding structure that comprises of two two-level inverters offers harmonic performance equivalent to three- and four-level single-sided supply. The second drive structure under analysis is able to produce four, five and six voltage levels, depending on utilised dc-link voltage ratio. Modulation schemes are classified in two categories. So-called coupled modulation schemes are developed under the assumption that open-end winding drives are equivalent to certain single-sided multilevel solutions. This enables the application of slightly modified modulation methods for multilevel inverters, to the open-end winding configurations. As a consequence, number of utilised voltage levels can be higher than the sum of two inverters’ number of levels. However, this boost in number of levels relies on simultaneous switching in two inverters’ legs connected to the same drive phase,which causes so-called dead-time spikes. The second group, referred to in this thesis as decoupled modulation schemes, rely on the separate modulation of two inverters, using voltage references obtained by splitting the overall phase voltage reference, proportionally to inverters’ dc-link voltages. Hence, this kind of modulation offers somewhat worse harmonic performance, when compared to coupled modulation schemes. Special attention is paid to the stability of dc-link voltage levels, which is one of the most important figures of merits of quality for multilevel drives. Using a novel analysis approach, it is demonstrated that utilisation of optimal harmonic performance offered by coupled modulation methods leads to unstable dc-link voltages, but only in the cases where dc-link voltage ratio is used for increment of available number of voltage levels. Decoupled modulation methods offer stable dc-link voltages, regardless of drive configuration. One of the drawbacks of the analysed open-end winding drives is the need for two isolated dc sources, which form dc-link voltages of two inverters. For that reason, a possibility to use only one dc-source in open-end winding drives with isolated inverters is considered. Analysis shows that both drive topologies can be operated using so-called bulk and conditioning inverter control, where bulk inverter is supplied from an active dc source, but operates in staircase mode, while conditioning inverter performs high-frequency pulse width modulation, in order to suppress low-order harmonic content. This kind of operation is investigated in details for two specific configurations in which two inverters never operate at the same time in PWM mode, when coupled modulation methods are used. Comparison of the results shows that topology which comprises from one three- and one two-level inverter is more suitable for this kind of control. Together with previously analysed configurations and modulation strategies, dynamic performance of this novel drive is tested under the closed-loop speed control. Experimental results show that open-end winding drives are suitable for a wide range of applications

    A World-Class University-Industry Consortium for Wind Energy Research, Education, and Workforce Development: Final Technical Report

    Get PDF
    During the two-year project period, the consortium members have developed control algorithms for enhancing the reliability of wind turbine components. The consortium members have developed advanced operation and planning tools for accommodating the high penetration of variable wind energy. The consortium members have developed extensive education and research programs for educating the stakeholders on critical issues related to the wind energy research and development. In summary, The Consortium procured one utility-grade wind unit and two small wind units. Specifically, the Consortium procured a 1.5MW GE wind unit by working with the world leading wind energy developer, Invenergy, which is headquartered in Chicago, in September 2010. The Consortium also installed advanced instrumentation on the turbine and performed relevant turbine reliability studies. The site for the wind unit is InvenergyÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs Grand Ridge wind farmin Illinois. The Consortium, by working with Viryd Technologies, installed an 8kW Viryd wind unit (the Lab Unit) at an engineering lab at IIT in September 2010 and an 8kW Viryd wind unit (the Field Unit) at the Stuart Field on IITÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs main campus in July 2011, and performed relevant turbine reliability studies. The operation of the Field Unit is also monitored by the Phasor Measurement Unit (PMU) in the nearby Stuart Building. The Consortium commemorated the installations at the July 20, 2011 ribbon-cutting ceremony. The ConsortiumÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs researches on turbine reliability included (1) Predictive Analytics to Improve Wind Turbine Reliability; (2) Improve Wind Turbine Power Output and Reduce Dynamic Stress Loading Through Advanced Wind Sensing Technology; (3) Use High Magnetic Density Turbine Generator as Non-rare Earth Power Dense Alternative; (4) Survivable Operation of Three Phase AC Drives in Wind Generator Systems; (5) Localization of Wind Turbine Noise Sources Using a Compact Microphone Array; (6) Wind Turbine Acoustics - Numerical Studies; and (7) Performance of Wind Turbines in Rainy Conditions. The ConsortiumÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs researches on wind integration included (1) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (2) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection; (3) Integration of Non-dispatchable Resources in Electricity Markets; (4) Integration of Wind Unit with Microgrid. The ConsortiumÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂs education and outreach activities on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development; (3) Wind Energy Outreach

    Modeling and Analysis of Power Processing Systems

    Get PDF
    The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems

    Reduced Switch Count Seventeen Level Inverter Topology for Open-End Induction Motor Drives

    No full text
    This paper presents a seventeen level inverter topology for open end induction motor drives requiring only twelve switches per phase. One three-level inverter and one seven -level inverter with DC link voltages in 3:1 ratio are connected to the two ends of the stator winding of the induction motor to generate a seventeen level space vector structure. A level shifted carrier based scheme is used to modulate the inverter, which requires only instantaneous phase voltage references. Selection of switching states is used to ensure that both inverters supply real power to the motor the over entire modulation range, preventing overcharging of the DC bus. The topology was tested for steady state operation over the entire modulation range, and experimental results are included below

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Predicting companies stock price direction by using sentiment analysis of news articles

    Full text link
    This paper summarizes our experience teaching several courses at Metropolitan College of Boston University Computer Science department over five years. A number of innovative teaching techniques are presented in this paper. We specifically address the role of a project archive, when designing a course. This research paper explores survey results from every running of courses, from 2014 to 2019. During each class, students participated in two distinct surveys: first, dealing with key learning outcomes, and, second, with teaching techniques used. This paper makes several practical recommendations based on the analysis of collected data. The research validates the value of a sound repository of technical term projects and the role such repository plays in effective teaching and learning of computer science courses.Published versio
    corecore