2 research outputs found

    Alternating current servo motor and programmable logic controller coupled with a pipe cutting machine based on human-machine interface using dandelion optimizer algorithm - attention pyramid convolution neural network

    Get PDF
    The proposed research addresses the optimization challenges in servo motor control for pipe-cutting machines, aiming to enhance performance and efficiency. Recognizing the existing limitations in parameter optimization and system behavior prediction, a novel hybrid approach is introduced. The methodology combines a Dandelion optimizer algorithm (DOA) for servo motor parameter optimization and an Attention pyramid convolution neural network (APCNN) (APCNN) for system behavior prediction. Integrated with a Programmable Logic Controller (PLC) and human-machine interface (HMI), this approach offers a comprehensive solution. Our research identifies a significant research gap in the efficiency of existing methods, emphasizing the need for improved control parameter optimization and system behavior prediction for cost reduction and enhanced efficiency. Through implementation on the MATLAB platform, the proposed DOA-APCNN approach demonstrates a noteworthy 30% reduction in computation time compared to existing methods such as Heap-based optimizer (HBO), Cuckoo Search Algorithm (CSA), and Salp Swarm Algorithm (SSA). These findings pave the way for faster and more efficient pipe-cutting operations, contributing to advancements in industrial automation and control systems

    Reduced Dynamic Modeling for Heavy-Duty Hydraulic Manipulators With Multi-Closed-Loop Mechanisms

    No full text
    A reduced dynamic modeling approach is introduced to systematically establish explicit closed-form dynamic equations for the main motion system of a heavy-duty hydraulic manipulator with multi-closed-loop mechanisms. The harmonious combination of the reduced system dynamic method with Lagrangian formulation, the principle of virtual work and screw theory greatly reduces the tedious calculation and largely simplifies the derivation of explicit control-orientated closed-form dynamic equations for complex multi-closed-loop mechanisms. Only three coupled subsystems, two Jacobian matrices, and two Hessian matrices are involved, thereby greatly reducing the order and the complexity of the closed-form dynamic equations. In addition to calculating the two Jacobian matrices by screw theory, the two Hessian matrices are also calculated straightforwardly by screw theory, thereby avoiding the difficulty in obtaining Hessian matrices by differentiating the Jacobian matrices and simplifying the calculation of the two Hessian matrices. No parts of dynamic equations are neglected in the derivation of the dynamic model. Thus, the accurate dynamic motion equations for the main motion system are obtained concisely. The derived closed-form dynamic equations are explicit with respect to the system inputs, which facilitate dynamics analysis and controller design. The experiments on the main motion system of the heavy-duty hydraulic forging manipulator demonstrate the efficiency of the proposed approach
    corecore