47,628 research outputs found
"With 1 follower I must be AWESOME :P". Exploring the role of irony markers in irony recognition
Conversations in social media often contain the use of irony or sarcasm, when
the users say the opposite of what they really mean. Irony markers are the
meta-communicative clues that inform the reader that an utterance is ironic. We
propose a thorough analysis of theoretically grounded irony markers in two
social media platforms: and . Classification and frequency
analysis show that for , typographic markers such as emoticons and
emojis are the most discriminative markers to recognize ironic utterances,
while for the morphological markers (e.g., interjections, tag
questions) are the most discriminative.Comment: ICWSM 201
The Impact of Crowds on News Engagement: A Reddit Case Study
Today, users are reading the news through social platforms. These platforms
are built to facilitate crowd engagement, but not necessarily disseminate
useful news to inform the masses. Hence, the news that is highly engaged with
may not be the news that best informs. While predicting news popularity has
been well studied, it has not been studied in the context of crowd
manipulations. In this paper, we provide some preliminary results to a longer
term project on crowd and platform manipulations of news and news popularity.
In particular, we choose to study known features for predicting news popularity
and how those features may change on reddit.com, a social platform used
commonly for news aggregation. Along with this, we explore ways in which users
can alter the perception of news through changing the title of an article. We
find that news on reddit is predictable using previously studied sentiment and
content features and that posts with titles changed by reddit users tend to be
more popular than posts with the original article title.Comment: Published at The 2nd International Workshop on News and Public
Opinion at ICWSM 201
A qualitative evaluation of two different law enforcement approaches on dark net markets
This paper presents the results of a qualitative study on discussions about two major law enforcement interventions against Dark Net Market (DNM) users extracted from relevant Reddit forums. We assess the impact of Operation Hyperion and Operation Bayonet (combined with the closure of the site Hansa) by analyzing posts and comments made by users of two Reddit forums created for the discussion of Dark Net Markets. The operations are compared in terms of the size of the discussions, the consequences recorded, and the opinions shared by forum users. We find that Operation Bayonet generated a higher number of discussions on Reddit, and from the qualitative analysis of such discussions it appears that this operation also had a greater impact on the DNM ecosystem. Index Terms—cybercrime, policy, law enforcement, qualitative, drug markets, dark webAccepted manuscrip
Understanding Image Virality
Virality of online content on social networking websites is an important but
esoteric phenomenon often studied in fields like marketing, psychology and data
mining. In this paper we study viral images from a computer vision perspective.
We introduce three new image datasets from Reddit, and define a virality score
using Reddit metadata. We train classifiers with state-of-the-art image
features to predict virality of individual images, relative virality in pairs
of images, and the dominant topic of a viral image. We also compare machine
performance to human performance on these tasks. We find that computers perform
poorly with low level features, and high level information is critical for
predicting virality. We encode semantic information through relative
attributes. We identify the 5 key visual attributes that correlate with
virality. We create an attribute-based characterization of images that can
predict relative virality with 68.10% accuracy (SVM+Deep Relative Attributes)
-- better than humans at 60.12%. Finally, we study how human prediction of
image virality varies with different `contexts' in which the images are viewed,
such as the influence of neighbouring images, images recently viewed, as well
as the image title or caption. This work is a first step in understanding the
complex but important phenomenon of image virality. Our datasets and
annotations will be made publicly available.Comment: Pre-print, IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 201
Listening between the Lines: Learning Personal Attributes from Conversations
Open-domain dialogue agents must be able to converse about many topics while
incorporating knowledge about the user into the conversation. In this work we
address the acquisition of such knowledge, for personalization in downstream
Web applications, by extracting personal attributes from conversations. This
problem is more challenging than the established task of information extraction
from scientific publications or Wikipedia articles, because dialogues often
give merely implicit cues about the speaker. We propose methods for inferring
personal attributes, such as profession, age or family status, from
conversations using deep learning. Specifically, we propose several Hidden
Attribute Models, which are neural networks leveraging attention mechanisms and
embeddings. Our methods are trained on a per-predicate basis to output rankings
of object values for a given subject-predicate combination (e.g., ranking the
doctor and nurse professions high when speakers talk about patients, emergency
rooms, etc). Experiments with various conversational texts including Reddit
discussions, movie scripts and a collection of crowdsourced personal dialogues
demonstrate the viability of our methods and their superior performance
compared to state-of-the-art baselines.Comment: published in WWW'1
- …
