1,681,049 research outputs found

    Electro-absorption of silicene and bilayer graphene quantum dots

    Get PDF
    We study numerically the optical properties of low-buckled silicene and AB-stacked bilayer graphene quantum dots subjected to an external electric field, which is normal to their surface. Within the tight-binding model, the optical absorption is calculated for quantum dots, of triangular and hexagonal shapes, with zigzag and armchair edge terminations. We show that in triangular silicene clusters with zigzag edges a rich and widely tunable infrared absorption peak structure originates from transitions involving zero energy states. The edge of absorption in silicene quantum dots undergoes red shift in the external electric field for triangular clusters, whereas blue shift takes place for hexagonal ones. In small clusters of bilayer graphene with zigzag edges the edge of absorption undergoes blue/red shift for triangular/hexagonal geometry. In armchair clusters of silicene blue shift of the absorption edge takes place for both cluster shapes, while red shift is inherent for both shapes of the bilayer graphene quantum dots.Comment: 7 pages, 7 figure

    Color Point Tuning for (Sr,Ca,Ba) Si2O2N2:Eu2+ for White Light LEDs

    Get PDF
    Color point tuning is an important challenge for improving white light LEDs. In this paper, the possibilities of color tuning with the efficient LED phosphor Sr1−x−y−zCaxBaySi2O2N2:Euz2+ (0 ≤ x, y ≤ 1; 0.005 ≤ z ≤ 0.16) are investigated. The emission color can be tuned in two ways: by changing Eu2+ concentration and by substitution of the host lattice cation Sr2+ by either Ca2+ or Ba2+. The variation in the Eu2+ concentration shows a red shift of the emission upon increasing the Eu concentration above 2%. The red shift is explained by energy migration and energy transfer to Eu2+ ions emitting at longer wavelengths. Along with this (desired) red shift there is an (undesired) lowering of the quantum efficiency and the thermal quenching temperature due to concentration quenching. Partial substitution of Sr2+ by either Ca2+ or Ba2+ also results in a red-shifted Eu2+ emission. For Ca2+ this is expected and the red shift is explained by an increased crystal field splitting for Eu2+ on the (smaller) Ca2+ cation site. For Ba2+, the red shift is surprising. Often, a blue shift of the fd emission is observed in case of substitution of Sr2+ by the larger Ba2+ cation. The Eu2+ emission in the pure BaSi2O2N2 host lattice is indeed blue-shifted. Temperature dependent luminescence measurements show that the quenching temperature drops upon substitution of Sr by Ca, whereas for Ba substitution, the quenching temperature remains high. Color tuning by partial substitution of Sr2+ by Ba2+ is therefore the most promising way to shift the color point of LEDs while retaining the high quantum yield and high luminescence quenching temperature

    Anomalous blue-shift of terahertz whispering-gallery modes via dielectric and metallic tuning

    Full text link
    The vast majority of resonant systems show a red-shift for the resonance frequency when a perturbation, e.g. losses, are introduced to the system. In contrast, here we report for the first time the experimental demonstration of both red- and anomalous blue-shifting of whispering-gallery modes (WGMs) using dielectric and metallic substrates. The maximum blue-shift is more than three times as large as the expected red-shift, proving that the anomalous blue-shift is more than a peculiar curiosity. The experiments are performed in the terahertz (THz) frequency range with coherent continuous-wave spectroscopy. The results establish dielectric and metallic tuning as a novel, and viable approach to tune high quality (high-Q) WGMs, and provide valuable insights into the anomalous blue-shift of WGM cavity systems. The tuning capabilities for these compact monolithic resonators is of significant interest for fundamental science and technological applications alike
    corecore