38,302 research outputs found

    Office paper recyclability: first recycling

    Get PDF
    Paper recyclability implies in the paper capacity to be recycled maintaining its properties to the maximum. Four commercial papers from Argentina and Brazil were studied, including three eucalyptus kraft (A, B, C) and one sugar cane bagasse soda-AQ (D), all with different bleaching processes. Their physical and chemical properties and a first laboratory recycling were evaluated. A refining of the pulp with a PFI mill, applying two energy levels at two different intensities - measured by number of revolutions and load - was accomplished to reach the same °SR (between 30 and 40, approximately). The refining energy and the yield were registered in each case. The properties of laboratory handsheets, and the aging to 24, 48, 72 and 144 hours were evaluated. The statistical analysis of the results indicates that the properties of the initial eucalyptus papers were similar, whereas they were generally inferior in the case of the bagasse paper. The bagasse and eucalyptus papers presented similar initial whiteness, but the first one had a higher reversion than the others. Once repulped, the eucalyptus papers A, B and C required, respectively, 4, 7 and 10 times greater energy than D, to obtain the same °SR. In all cases, the required energy to achieve the same °SR is slightly greater with the smaller refining intensity. The physical properties of the handsheets from the first recycle of paper D were, in general, lower. Among eucalyptus papers, B showed a slightly higher resistance and C, a slightly lower one. The mechanical properties of pulp sheets A, and D to a lesser extension, were more affected by the refining intensity than the rest, indicating a higher sensitivity of the fibers. The whiteness of the sheets of pulp B is lower than the rest. Opacity and light scattering coefficient of the sheets of pulp C were much higher than those of the other pulps.Fil: Benitez, Julieta Beatriz. Universidad Nacional de Misiones; ArgentinaFil: Koga, Mariza E. T.. Instituto de Pesquisas Tecnológicas de São Paulo (ipt); BrasilFil: Otero D'Almeida, Maria L.. Instituto de Pesquisas Tecnológicas de São Paulo (ipt); BrasilFil: Felissia, Fernando Esteban. Universidad Nacional de Misiones; ArgentinaFil: Park, Song W.. Escola Politecnica, Universidad de Sao Paulo (usp); BrasilFil: Area, Maria Cristina. Universidad Nacional de Misiones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Waste, Recycling, and "Design for Environment": Roles for Markets and Policy Instruments

    Get PDF
    Several studies that have solved for optimal solid waste policy instruments have suggested that transaction costs may often prevent the working of recycling markets. In this paper, we explicitly incorporate such costs into a general equilibrium model of production, consumption, recycling, and disposal. Specifically, we assume that consumers have access to both recycling without payment and recycling with payment but that the latter option comes with transaction costs. Producers choose material and nonmaterial inputs to produce a consumer product, and they also choose design attributes of that product—its weight and degree of recyclability. We find that the policy instruments that yield a social optimum in this setting need to vary with the degree of recyclability of products. Moreover, they need to be set to ensure that recycling markets do not operate—that is, that all recycling takes place without an exchange of money between recyclers and consumers. We argue that implementing such a policy would be difficult in practice. We then solve for a simpler set of instruments that implement a constrained (second-best) optimum. We find the results in this setting more encouraging: a modest disposal fee—less than the Pigouvian fee—combined with a common deposit-refund applied to all products will yield the constrained optimum. Moreover, this set of constrained optimal instruments is robust to the possibility that consumers imperfectly sort used products into trash and recyclables.Dfe, deposit-refund, disposal fee, constrained optimum

    Policies to Encourage Recycling and "Design for Environment": What to Do When Markets are Missing

    Get PDF
    Several studies have shown the efficiency of both a Pigovian tax on waste disposal and a deposit-refund instrument, that is a combined output tax and recycling subsidy. The efficiency of these instruments, however, critically depends on households being paid for recycling. In reality, although most households have access to curbside recycling services, they are not paid for the items they set out at the curb. All items placed in a recycling bin are thus of equal value to a household, and there is no incentive for producers to make their products any more recyclable than what is necessary to be eligible for the bin. This paper characterizes the constrained (second-best) optimum that exists with the missing recycling market and solves for a modified deposit-refund instrument that will achieve the constrained optimum.

    Green process for adipic acid synthesis: oxidation by hydrogen peroxide in water micromelusions using Benzalkonium Chloride C12-14 surfactant

    Get PDF
    Adipic acid was synthesized by the oxidation of cyclohexene using 30% hydrogen peroxide in a microemulsion in the presence of sodium tungstate as catalyst. The proposed green process is environmentally friendly since catalyst and surfactant are recycled and pure adipic acid is produced in high yield (70% to 79%). Microemulsions are used as a “green solvent” and give a better contact between the phases. Alkyldimethylbenzylammonium chloride (C12-C14) was used as a surfactant for the generation of the microemulsion since it enables the use of harmful organic solvents and phase-transfer catalysts to be avoided. Optimised operating conditions (temperature, reaction time, separation process) have been defined and applied to evaluate the industrial practicability. The main interest of the present work is the easy recovery of pure adipic acid and the reuse of the reaction media (surfactant and catalyst). This shows promise for developing a future green industrial process that will enable greenhouse gas emissions (N2O), among others, to be reduced

    Electrical and Mechanical Properties of new Recyclable Power Cable Insulation Materials based upon Polyethylene Blends

    No full text
    Chemically crosslinked polyethylene (XLPE) has been used as electrical insulation for power cables since the 1970s due to its favourable combination of electrical and mechanical properties. However, as the electrical engineering community has become increasingly aware of the life cycle environmental impacts, XLPE has come under scrutiny for its lack of recyclability and the high process energies used in its manufacture. Although technologies are being developed to facilitate the re-use of XLPE at the end of its initial service life, the use of this material is inferior to fully recyclable and low process energy alternatives. In this investigation, we concentrated on the use of binary blends of linear and branched polyethylene (LPE / BPE) as potential replacement materials for XLPE, since such systems have the potential to combine comparable mechanical properties and enhanced breakdown strength with good recyclability. We compare the thin film AC ramp breakdown behaviour of blends as a function of temperature up to 97 oC. These consist of the same BPE in virgin and crosslinked states and in a blend with 20wt% LPE. These data are augmented with dynamic mechanical analysis. In concert, these data indicate that with appropriate morphological control the blended thermoplastic material exhibits superior properties to XLPE under conventional operating conditions and may even be suitable for higher temperature operation than XLPE. The paper will discuss the importance of polymer blending and blend physical properties in the context of the process requirements and the implications for cable manufacture and on cable electrical and environmental performance in comparison with XLPE

    Clean synthesis of adipic acid from cyclohexene in microemulsions with stearyl dimethyl benzyl ammonium chloride as surfactant: From the laboratory to bench scale

    Get PDF
    Adipic acid, HOOC(CH2)4COOH, is a white crystalline solid used primarily in the manufacture of nylon-6,6 polyamide. In industry, adipic acid is mainly produced by oxidation of cyclohexane with air and nitric acidfollowing a homogeneous two-step route. However, this process leads to the formation of nitrous oxide, a greenhouse gas that has to be decomposed. The aim of this study was the development of a clean technology at pilot scale in order to obtain and recover pure adipic acid, and the evaluation of its industrial practicability. Adipic acid was synthesized from cyclohexene and hydrogen peroxide in microemulsions with stearyl dimethyl benzyl ammonium chloride as surfactant. The non-polluting catalyst sodium tungstate, which contains no heavy metal, was used and the reaction conducted under mild conditions (85 C, 8 h). Yields of up to 81% were reached at the 0.14 L scale. However at the end of the reaction the catalyst and the surfactant must be separated and recycled for subsequent cycles. The reuse of the reaction media enabled the conversion to be increased up to 92% but a loss of surfactant and/or catalyst through the cycles progressively reduced the yields. Yields at the bench scale (1.4 L) increased during the two first cycles and then decreased to conversions of between 60% and 70%. Globally the yield is a little lower at bench scale. The results obtained show that the synthesis of adipic acid by a heterogeneous one-step oxidation of cyclohexene in the presence of hydrogen peroxide is an attractive route for developing a future green industrial process

    Office paper recyclability: fibrous characteristics

    Get PDF
    Recyclability is the ability of a material to reacquire the same properties it had originally. The aim of this work was to verify the recyclability of three printing and writing papers, from the characteristics of their fibers after two recycles. Three ECF bleached kraft eucalyptus commercial bond papers from Argentina and Brazil were studied (A, B, C). The papers were repulped and refined using different levels and intensities of energy (1st recycle). Laboratory sheets were produced, and they were repulped and refined again (2nd recycle). The microscopic characteristics of repulped papers were obtained by automatic equipment based on image analysis. Differences found in the behavior of the different samples can be explained by fiber parameters. The fiber length was significantly different in the three papers (A > B > C) and globally decreased in the second recycle (about 6%). Sample A had the highest initial fiber length and length/width, but it largely decreased with refining conditions in the 1st recycle (length fall 12%, generating fines by cutting), whereas it fall 9% between the 1st and 2nd recycles, and nothing with refining conditions in the 2nd recycle. Sample B fall by 5% with refining conditions in the 1st recycle, and 9% between the 1st and the 2nd recycle, but suffered few alteration in the second recycle. Fiber length of sample C was unaffected by refining conditions and only decreased 9% between the 1st and 2nd recycles. In all cases, the generated fines increased lightly with refining in the first recycle, but were two-fold higher in the second recycle than in the first one. The fiber coarseness of the 3 samples was similar in the first recycle, but decreases significantly in the 2nd recycleFil: Benitez, Julieta Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Cs.exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Koga, Mariza E. T.. Instituto de Pesquisas Tecnologicas de Sao Paulo; BrasilFil: Otero D'Almeida, Maria L.. Instituto de Pesquisas Tecnologicas de Sao Paulo; BrasilFil: Felissia, Fernando Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Cs.exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Park, Song W.. Universidade de Sao Paulo; BrasilFil: Area, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Cs.exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentin

    Product ecodesign and materials: current status and future prospects

    Full text link
    The aim of this paper is to discuss the current status of ecodesign in the industry and its future implications for materials. There is today more and more focus on the environmental impacts of products during their whole life cycle. In particular, ecodesign aims at integrating environmental aspects during the product's design process as any other criterion, in order to reduce the life cycle impacts. Although a lot of product environmental impact assessment and Design for Environment tools already exist, environmental aspects are unfortunately rarely routinely integrated into product development process in the industry. This is mainly due to the fact that current ecodesign tools are little adapted to designers' practices, requirements and competencies. After the sequential and DfX paradigms, design of products is today maturing into Integrated Design, where multiple points of views and expertise have to be considered at the same time to progressively define the product

    Development of covalent triazine frameworks as heterogeneous catalytic supports

    Get PDF
    Covalent triazine frameworks (CTFs) are established as an emerging class of porous organic polymers with remarkable features such as large surface area and permanent porosity, high thermal and chemical stability, and convenient functionalization that promotes great potential in heterogeneous catalysis. In this article, we systematically present the structural design of CTFs as a versatile scaffold to develop heterogeneous catalysts for a variety of chemical reactions. We mainly focus on the functionalization of CTFs, including their use for incorporating and stabilization of nanoparticles and immobilization of molecular complexes onto the frameworks

    Pd nanoparticles confined in mesoporous N-doped carbon silica supports: a synergistic effect between catalyst and support

    Get PDF
    Palladium nanoparticles of similar size were deposited on different supports, layers of carbon materials (with and without nitrogen doping) on the surface of a MCF (mesocellular foam) silica. For the generation of the N-doped carbon coatings, three different N sources were used to also investigate a possible influence of the N-doped carbon precursor and thus the structure of the N-doped carbons on their performance as catalyst support. These catalysts were tested for the Suzuki coupling and hydrogenation reactions. For the Suzuki reaction, the carbon coatings showed to increase dramatically the stability of the MCF material. Furthermore, when N-doped carbon coatings were applied, strong improvement of the stability of the catalysts was observed due to an enhanced interaction between metal nanoparticles and the support, preventing metal particle growth. In hydrogenation reactions, the presence of the N-doped carbon coating on the silica support increases the adsorption of aromatic compounds causing an enhancement of the catalytic activity of Pd NPs when compared to the non-doped supports.TU Berlin, Open-Access-Mittel - 2020DFG, 390540038, EXC 2008: UniSysCa
    corecore