5,870 research outputs found

    Complexity vs Energy: Theory of Computation and Theoretical Physics

    Full text link
    This paper is a survey dedicated to the analogy between the notions of {\it complexity} in theoretical computer science and {\it energy} in physics. This analogy is not metaphorical: I describe three precise mathematical contexts, suggested recently, in which mathematics related to (un)computability is inspired by and to a degree reproduces formalisms of statistical physics and quantum field theory.Comment: 23 pages. Talk at the satellite conference to ECM 2012, "QQQ Algebra, Geometry, Information", Tallinn, July 9-12, 201

    Complexity vs energy: theory of computation and theoretical physics

    No full text

    Improved Successive Cancellation Decoding of Polar Codes

    Full text link
    As improved versions of successive cancellation (SC) decoding algorithm, successive cancellation list (SCL) decoding and successive cancellation stack (SCS) decoding are used to improve the finite-length performance of polar codes. Unified descriptions of SC, SCL and SCS decoding algorithms are given as path searching procedures on the code tree of polar codes. Combining the ideas of SCL and SCS, a new decoding algorithm named successive cancellation hybrid (SCH) is proposed, which can achieve a better trade-off between computational complexity and space complexity. Further, to reduce the complexity, a pruning technique is proposed to avoid unnecessary path searching operations. Performance and complexity analysis based on simulations show that, with proper configurations, all the three improved successive cancellation (ISC) decoding algorithms can have a performance very close to that of maximum-likelihood (ML) decoding with acceptable complexity. Moreover, with the help of the proposed pruning technique, the complexities of ISC decoders can be very close to that of SC decoder in the moderate and high signal-to-noise ratio (SNR) regime.Comment: This paper is modified and submitted to IEEE Transactions on Communication

    BSML: A Binding Schema Markup Language for Data Interchange in Problem Solving Environments (PSEs)

    Full text link
    We describe a binding schema markup language (BSML) for describing data interchange between scientific codes. Such a facility is an important constituent of scientific problem solving environments (PSEs). BSML is designed to integrate with a PSE or application composition system that views model specification and execution as a problem of managing semistructured data. The data interchange problem is addressed by three techniques for processing semistructured data: validation, binding, and conversion. We present BSML and describe its application to a PSE for wireless communications system design

    General Strong Polarization

    Full text link
    Arikan's exciting discovery of polar codes has provided an altogether new way to efficiently achieve Shannon capacity. Given a (constant-sized) invertible matrix MM, a family of polar codes can be associated with this matrix and its ability to approach capacity follows from the {\em polarization} of an associated [0,1][0,1]-bounded martingale, namely its convergence in the limit to either 00 or 11. Arikan showed polarization of the martingale associated with the matrix G2=(1011)G_2 = \left(\begin{matrix} 1& 0 1& 1\end{matrix}\right) to get capacity achieving codes. His analysis was later extended to all matrices MM that satisfy an obvious necessary condition for polarization. While Arikan's theorem does not guarantee that the codes achieve capacity at small blocklengths, it turns out that a "strong" analysis of the polarization of the underlying martingale would lead to such constructions. Indeed for the martingale associated with G2G_2 such a strong polarization was shown in two independent works ([Guruswami and Xia, IEEE IT '15] and [Hassani et al., IEEE IT '14]), resolving a major theoretical challenge of the efficient attainment of Shannon capacity. In this work we extend the result above to cover martingales associated with all matrices that satisfy the necessary condition for (weak) polarization. In addition to being vastly more general, our proofs of strong polarization are also simpler and modular. Specifically, our result shows strong polarization over all prime fields and leads to efficient capacity-achieving codes for arbitrary symmetric memoryless channels. We show how to use our analyses to achieve exponentially small error probabilities at lengths inverse polynomial in the gap to capacity. Indeed we show that we can essentially match any error probability with lengths that are only inverse polynomial in the gap to capacity.Comment: 73 pages, 2 figures. The final version appeared in JACM. This paper combines results presented in preliminary form at STOC 2018 and RANDOM 201

    Implementing Brouwer's database of strongly regular graphs

    Full text link
    Andries Brouwer maintains a public database of existence results for strongly regular graphs on n≤1300n\leq 1300 vertices. We implemented most of the infinite families of graphs listed there in the open-source software Sagemath, as well as provided constructions of the "sporadic" cases, to obtain a graph for each set of parameters with known examples. Besides providing a convenient way to verify these existence results from the actual graphs, it also extends the database to higher values of nn.Comment: 18 pages, LaTe

    Asymptotic Distribution of Multilevel Channel Polarization for a Certain Class of Erasure Channels

    Full text link
    This study examines multilevel channel polarization for a certain class of erasure channels that the input alphabet size is an arbitrary composite number. We derive limiting proportions of partially noiseless channels for such a class. The results of this study are proved by an argument of convergent sequences, inspired by Alsan and Telatar's simple proof of polarization, and without martingale convergence theorems for polarization process.Comment: 31 pages; 1 figure; 1 table; a short version of this paper has been submitted to the 2018 IEEE International Symposium on Information Theory (ISIT2018
    • …
    corecore