117 research outputs found

    Soft-Decision-Driven Channel Estimation for Pipelined Turbo Receivers

    Full text link
    We consider channel estimation specific to turbo equalization for multiple-input multiple-output (MIMO) wireless communication. We develop a soft-decision-driven sequential algorithm geared to the pipelined turbo equalizer architecture operating on orthogonal frequency division multiplexing (OFDM) symbols. One interesting feature of the pipelined turbo equalizer is that multiple soft-decisions become available at various processing stages. A tricky issue is that these multiple decisions from different pipeline stages have varying levels of reliability. This paper establishes an effective strategy for the channel estimator to track the target channel, while dealing with observation sets with different qualities. The resulting algorithm is basically a linear sequential estimation algorithm and, as such, is Kalman-based in nature. The main difference here, however, is that the proposed algorithm employs puncturing on observation samples to effectively deal with the inherent correlation among the multiple demapper/decoder module outputs that cannot easily be removed by the traditional innovations approach. The proposed algorithm continuously monitors the quality of the feedback decisions and incorporates it in the channel estimation process. The proposed channel estimation scheme shows clear performance advantages relative to existing channel estimation techniques.Comment: 11 pages; IEEE Transactions on Communications 201

    Signal processing for future MIMO-OFDM wireless communication systems

    Get PDF
    The combination of multiple-input multiple-output (MIMO) technology and orthogonal frequency division multiplexing (OFDM) is likely to provide the air-interface solution for future broadband wireless systems. A major challenge for MIMO-OFDM systems is the problem of multi-access interference (MAI) induced by the presence of multiple users transmitting over the same bandwidth. Novel signal processing techniques are therefore required to mitigate MAI and thereby increase link performance. A background review of space-time block codes (STBCs) to lever age diversity gain in MIMO systems is provided together with an introduction to OFDM. The link performance of an OFDM system is also shown to be sensitive to time-variation of the channel. Iterative minimum mean square error (MMSE) receivers are therefore proposed to overcome such time-variation. In the context of synchronous uplink transmission, a new two-step hard-decision interference cancellation receiver for STBC MIMO-OFDM is shown to have robust performance and relatively low complexity. Further improvement is obtained through employing error control coding methods and iterative algorithms. A soft output multiuser detector based on MMSE interference suppression and error correction coding at the first stage is shown by frame error rate simulations to provide significant performance improvement over the classical linear scheme. Finally, building on the "turbo principle", a low-complexity iterative interference cancellation and detection scheme is designed to provide a good compromise between the exponential computational complexity of the soft interference cancellation linear MMSE algorithm and the near-capacity performance of a scheme which uses iterative turbo processing for soft interference suppression in combination with multiuser detection.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Signal processing for future MIMO-OFDM wireless communication systems

    Get PDF
    The combination of multiple-input multiple-output (MIMO) technology and orthogonal frequency division multiplexing (OFDM) is likely to provide the air-interface solution for future broadband wireless systems. A major challenge for MIMO-OFDM systems is the problem of multi-access interference (MAI) induced by the presence of multiple users transmitting over the same bandwidth. Novel signal processing techniques are therefore required to mitigate MAI and thereby increase link performance. A background review of space-time block codes (STBCs) to lever age diversity gain in MIMO systems is provided together with an introduction to OFDM. The link performance of an OFDM system is also shown to be sensitive to time-variation of the channel. Iterative minimum mean square error (MMSE) receivers are therefore proposed to overcome such time-variation. In the context of synchronous uplink transmission, a new two-step hard-decision interference cancellation receiver for STBC MIMO-OFDM is shown to have robust performance and relatively low complexity. Further improvement is obtained through employing error control coding methods and iterative algorithms. A soft output multiuser detector based on MMSE interference suppression and error correction coding at the first stage is shown by frame error rate simulations to provide significant performance improvement over the classical linear scheme. Finally, building on the "turbo principle", a low-complexity iterative interference cancellation and detection scheme is designed to provide a good compromise between the exponential computational complexity of the soft interference cancellation linear MMSE algorithm and the near-capacity performance of a scheme which uses iterative turbo processing for soft interference suppression in combination with multiuser detection

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Low-complexity symbol detection and interference cancellation for OTFS system

    Get PDF
    Orthogonal time frequency space (OTFS) is a two-dimensional modulation scheme realized in the delay-Doppler domain, which targets the robust wireless transmissions in high-mobility environments. In such scenarios, OTFS signal suffers from multipath channel with continuous Doppler spread, which results in significant inter-symbol interference and inter-Doppler interference (IDI). In this paper, we analyze the interference generation mechanism, and compare statistical distributions of the IDI in two typical cases, i.e., limited-Doppler-shift channel and continuous-Doppler-spread channel (CoDSC). Focusing on the OTFS signal transmission over the CoDSC, our study firstly indicates that the widespread IDI incurs a computational burden for the element-wise detector like the message passing in the state-of-the-art works. Addressing this challenge, we propose a block-wise OTFS receiver by exploiting the structure and characteristics of the OTFS transmission matrix. In the receiver, we deliberately design an iteration strategy among the least squares minimum residual based channel equalizer, reliability-based symbol detector and interference eliminator, which can realize fast convergence by leveraging the sparsity of channel matrix. The simulations demonstrate that, in the CoDSC, the proposed scheme achieves much less detection error, and meanwhile reduces the computational complexity by an order of magnitude, compared with the state-of-the-art OTFS receivers

    Sparse-DFT and WHT Precoding with Iterative Detection for Highly Frequency-Selective Channels

    Full text link
    Various precoders have been recently studied by the wireless community to combat the channel fading effects. Two prominent precoders are implemented with the discrete Fourier transform (DFT) and Walsh-Hadamard transform (WHT). The WHT precoder is implemented with less complexity since it does not need complex multiplications. Also, spreading can be applied sparsely to decrease the transceiver complexity, leading to sparse DFT (SDFT) and sparse Walsh-Hadamard (SWH). Another relevant topic is the design of iterative receivers that deal with inter-symbol-interference (ISI). In particular, many detectors based on expectation propagation (EP) have been proposed recently for channels with high levels of ISI. An alternative is the maximum a-posterior (MAP) detector, although it leads to unfeasible high complexity in many cases. In this paper, we provide a relatively low-complexity \textcolor{black}{computation} of the MAP detector for the SWH. We also propose two \textcolor{black}{feasible methods} based on the Log-MAP and Max-Log-MAP. Additionally, the DFT, SDFT and SWH precoders are compared using an EP-based receiver with one-tap FD equalization. Lastly, SWH-Max-Log-MAP is compared to the (S)DFT with EP-based receiver in terms of performance and complexity. The results show that the proposed SWH-Max-Log-MAP has a better performance and complexity trade-off for QPSK and 16-QAM under highly selective channels, but has unfeasible complexity for higher QAM orders
    • …
    corecore