2,063 research outputs found

    Strategies for online inference of model-based clustering in large and growing networks

    Full text link
    In this paper we adapt online estimation strategies to perform model-based clustering on large networks. Our work focuses on two algorithms, the first based on the SAEM algorithm, and the second on variational methods. These two strategies are compared with existing approaches on simulated and real data. We use the method to decipher the connexion structure of the political websphere during the US political campaign in 2008. We show that our online EM-based algorithms offer a good trade-off between precision and speed, when estimating parameters for mixture distributions in the context of random graphs.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS359 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Patterns of Regional Travel Behavior: An Analysis of Japanese Hotel Reservation Data

    Get PDF
    This study considers the availability of room opportunities collected from a Japanese hotel booking site. We empirically analyze the daily number of room opportunities for four areas. To determine the migration trends of travelers, we discuss a finite mixture of Poisson distributions and the EM-algorithm as its parameter estimation method. We further propose a method to infer the probability of opportunities existing for each observation. We characterize demand-supply situations by means of relationship between the averaged room prices and the probability of opportunity existing.Comment: 22 pages, 16 figures; International Review of Financial Analysis (2011

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Aggregate matrix-analytic techniques and their applications

    Get PDF
    The complexity of computer systems affects the complexity of modeling techniques that can be used for their performance analysis. In this dissertation, we develop a set of techniques that are based on tractable analytic models and enable efficient performance analysis of computer systems. Our approach is three pronged: first, we propose new techniques to parameterize measurement data with Markovian-based stochastic processes that can be further used as input into queueing systems; second, we propose new methods to efficiently solve complex queueing models; and third, we use the proposed methods to evaluate the performance of clustered Web servers and propose new load balancing policies based on this analysis.;We devise two new techniques for fitting measurement data that exhibit high variability into Phase-type (PH) distributions. These techniques apply known fitting algorithms in a divide-and-conquer fashion. We evaluate the accuracy of our methods from both the statistics and the queueing systems perspective. In addition, we propose a new methodology for fitting measurement data that exhibit long-range dependence into Markovian Arrival Processes (MAPs).;We propose a new methodology, ETAQA, for the exact solution of M/G/1-type processes, (GI/M/1-type processes, and their intersection, i.e., quasi birth-death (QBD) processes. ETAQA computes an aggregate steady state probability distribution and a set of measures of interest. E TAQA is numerically stable and computationally superior to alternative solution methods. Apart from ETAQA, we propose a new methodology for the exact solution of a class of GI/G/1-type processes based on aggregation/decomposition.;Finally, we demonstrate the applicability of the proposed techniques by evaluating load balancing policies in clustered Web servers. We address the high variability in the service process of Web servers by dedicating the servers of a cluster to requests of similar sizes and propose new, content-aware load balancing policies. Detailed analysis shows that the proposed policies achieve high user-perceived performance and, by continuously adapting their scheduling parameters to the current workload characteristics, provide good performance under conditions of transient overload

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Online EM Algorithm for Latent Data Models

    Full text link
    In this contribution, we propose a generic online (also sometimes called adaptive or recursive) version of the Expectation-Maximisation (EM) algorithm applicable to latent variable models of independent observations. Compared to the algorithm of Titterington (1984), this approach is more directly connected to the usual EM algorithm and does not rely on integration with respect to the complete data distribution. The resulting algorithm is usually simpler and is shown to achieve convergence to the stationary points of the Kullback-Leibler divergence between the marginal distribution of the observation and the model distribution at the optimal rate, i.e., that of the maximum likelihood estimator. In addition, the proposed approach is also suitable for conditional (or regression) models, as illustrated in the case of the mixture of linear regressions model.Comment: Version that includes the corrigendum published in volume 73, part 5 (2011), of the Journal of the Royal Statistical Society, Series B + the correction of a typo in Eqs. (32-33
    corecore