60,701 research outputs found

    Recurrent Highway Networks

    Full text link
    Many sequential processing tasks require complex nonlinear transition functions from one step to the next. However, recurrent neural networks with 'deep' transition functions remain difficult to train, even when using Long Short-Term Memory (LSTM) networks. We introduce a novel theoretical analysis of recurrent networks based on Gersgorin's circle theorem that illuminates several modeling and optimization issues and improves our understanding of the LSTM cell. Based on this analysis we propose Recurrent Highway Networks, which extend the LSTM architecture to allow step-to-step transition depths larger than one. Several language modeling experiments demonstrate that the proposed architecture results in powerful and efficient models. On the Penn Treebank corpus, solely increasing the transition depth from 1 to 10 improves word-level perplexity from 90.6 to 65.4 using the same number of parameters. On the larger Wikipedia datasets for character prediction (text8 and enwik8), RHNs outperform all previous results and achieve an entropy of 1.27 bits per character.Comment: 12 pages, 6 figures, 3 table

    Learning Convolutional Text Representations for Visual Question Answering

    Full text link
    Visual question answering is a recently proposed artificial intelligence task that requires a deep understanding of both images and texts. In deep learning, images are typically modeled through convolutional neural networks, and texts are typically modeled through recurrent neural networks. While the requirement for modeling images is similar to traditional computer vision tasks, such as object recognition and image classification, visual question answering raises a different need for textual representation as compared to other natural language processing tasks. In this work, we perform a detailed analysis on natural language questions in visual question answering. Based on the analysis, we propose to rely on convolutional neural networks for learning textual representations. By exploring the various properties of convolutional neural networks specialized for text data, such as width and depth, we present our "CNN Inception + Gate" model. We show that our model improves question representations and thus the overall accuracy of visual question answering models. We also show that the text representation requirement in visual question answering is more complicated and comprehensive than that in conventional natural language processing tasks, making it a better task to evaluate textual representation methods. Shallow models like fastText, which can obtain comparable results with deep learning models in tasks like text classification, are not suitable in visual question answering.Comment: Conference paper at SDM 2018. https://github.com/divelab/sva

    Recurrent Memory Networks for Language Modeling

    Get PDF
    Recurrent Neural Networks (RNN) have obtained excellent result in many natural language processing (NLP) tasks. However, understanding and interpreting the source of this success remains a challenge. In this paper, we propose Recurrent Memory Network (RMN), a novel RNN architecture, that not only amplifies the power of RNN but also facilitates our understanding of its internal functioning and allows us to discover underlying patterns in data. We demonstrate the power of RMN on language modeling and sentence completion tasks. On language modeling, RMN outperforms Long Short-Term Memory (LSTM) network on three large German, Italian, and English dataset. Additionally we perform in-depth analysis of various linguistic dimensions that RMN captures. On Sentence Completion Challenge, for which it is essential to capture sentence coherence, our RMN obtains 69.2% accuracy, surpassing the previous state-of-the-art by a large margin.Comment: 8 pages, 6 figures. Accepted at NAACL 201

    Effective Spoken Language Labeling with Deep Recurrent Neural Networks

    Full text link
    Understanding spoken language is a highly complex problem, which can be decomposed into several simpler tasks. In this paper, we focus on Spoken Language Understanding (SLU), the module of spoken dialog systems responsible for extracting a semantic interpretation from the user utterance. The task is treated as a labeling problem. In the past, SLU has been performed with a wide variety of probabilistic models. The rise of neural networks, in the last couple of years, has opened new interesting research directions in this domain. Recurrent Neural Networks (RNNs) in particular are able not only to represent several pieces of information as embeddings but also, thanks to their recurrent architecture, to encode as embeddings relatively long contexts. Such long contexts are in general out of reach for models previously used for SLU. In this paper we propose novel RNNs architectures for SLU which outperform previous ones. Starting from a published idea as base block, we design new deep RNNs achieving state-of-the-art results on two widely used corpora for SLU: ATIS (Air Traveling Information System), in English, and MEDIA (Hotel information and reservation in France), in French.Comment: 8 pages. Rejected from IJCAI 2017, good remarks overall, but slightly off-topic as from global meta-reviews. Recommendations: 8, 6, 6, 4. arXiv admin note: text overlap with arXiv:1706.0174

    Toward Abstraction from Multi-modal Data: Empirical Studies on Multiple Time-scale Recurrent Models

    Full text link
    The abstraction tasks are challenging for multi- modal sequences as they require a deeper semantic understanding and a novel text generation for the data. Although the recurrent neural networks (RNN) can be used to model the context of the time-sequences, in most cases the long-term dependencies of multi-modal data make the back-propagation through time training of RNN tend to vanish in the time domain. Recently, inspired from Multiple Time-scale Recurrent Neural Network (MTRNN), an extension of Gated Recurrent Unit (GRU), called Multiple Time-scale Gated Recurrent Unit (MTGRU), has been proposed to learn the long-term dependencies in natural language processing. Particularly it is also able to accomplish the abstraction task for paragraphs given that the time constants are well defined. In this paper, we compare the MTRNN and MTGRU in terms of its learning performances as well as their abstraction representation on higher level (with a slower neural activation). This was done by conducting two studies based on a smaller data- set (two-dimension time sequences from non-linear functions) and a relatively large data-set (43-dimension time sequences from iCub manipulation tasks with multi-modal data). We conclude that gated recurrent mechanisms may be necessary for learning long-term dependencies in large dimension multi-modal data-sets (e.g. learning of robot manipulation), even when natural language commands was not involved. But for smaller learning tasks with simple time-sequences, generic version of recurrent models, such as MTRNN, were sufficient to accomplish the abstraction task.Comment: Accepted by IJCNN 201
    corecore