334 research outputs found

    Dynamics in atomic signaling games

    Full text link
    We study an atomic signaling game under stochastic evolutionary dynamics. There is a finite number of players who repeatedly update from a finite number of available languages/signaling strategies. Players imitate the most fit agents with high probability or mutate with low probability. We analyze the long-run distribution of states and show that, for sufficiently small mutation probability, its support is limited to efficient communication systems. We find that this behavior is insensitive to the particular choice of evolutionary dynamic, a property that is due to the game having a potential structure with a potential function corresponding to average fitness. Consequently, the model supports conclusions similar to those found in the literature on language competition. That is, we show that efficient languages eventually predominate the society while reproducing the empirical phenomenon of linguistic drift. The emergence of efficiency in the atomic case can be contrasted with results for non-atomic signaling games that establish the non-negligible possibility of convergence, under replicator dynamics, to states of unbounded efficiency loss

    Evolutionary Game Theory Squared: Evolving Agents in Endogenously Evolving Zero-Sum Games

    Full text link
    The predominant paradigm in evolutionary game theory and more generally online learning in games is based on a clear distinction between a population of dynamic agents that interact given a fixed, static game. In this paper, we move away from the artificial divide between dynamic agents and static games, to introduce and analyze a large class of competitive settings where both the agents and the games they play evolve strategically over time. We focus on arguably the most archetypal game-theoretic setting -- zero-sum games (as well as network generalizations) -- and the most studied evolutionary learning dynamic -- replicator, the continuous-time analogue of multiplicative weights. Populations of agents compete against each other in a zero-sum competition that itself evolves adversarially to the current population mixture. Remarkably, despite the chaotic coevolution of agents and games, we prove that the system exhibits a number of regularities. First, the system has conservation laws of an information-theoretic flavor that couple the behavior of all agents and games. Secondly, the system is Poincar\'{e} recurrent, with effectively all possible initializations of agents and games lying on recurrent orbits that come arbitrarily close to their initial conditions infinitely often. Thirdly, the time-average agent behavior and utility converge to the Nash equilibrium values of the time-average game. Finally, we provide a polynomial time algorithm to efficiently predict this time-average behavior for any such coevolving network game.Comment: To appear in AAAI 202

    Neural-network solutions to stochastic reaction networks

    Full text link
    The stochastic reaction network is widely used to model stochastic processes in physics, chemistry and biology. However, the size of the state space increases exponentially with the number of species, making it challenging to investigate the time evolution of the chemical master equation for the reaction network. Here, we propose a machine-learning approach using the variational autoregressive network to solve the chemical master equation. The approach is based on the reinforcement learning framework and does not require any data simulated in prior by another method. Different from simulating single trajectories, the proposed approach tracks the time evolution of the joint probability distribution in the state space of species counts, and supports direct sampling on configurations and computing their normalized joint probabilities. We apply the approach to various systems in physics and biology, and demonstrate that it accurately generates the probability distribution over time in the genetic toggle switch, the early life self-replicator, the epidemic model and the intracellular signaling cascade. The variational autoregressive network exhibits a plasticity in representing the multi-modal distribution by feedback regulations, cooperates with the conservation law, enables time-dependent reaction rates, and is efficient for high-dimensional reaction networks with allowing a flexible upper count limit. The results suggest a general approach to investigate stochastic reaction networks based on modern machine learning

    Discovering How Agents Learn Using Few Data

    Full text link
    Decentralized learning algorithms are an essential tool for designing multi-agent systems, as they enable agents to autonomously learn from their experience and past interactions. In this work, we propose a theoretical and algorithmic framework for real-time identification of the learning dynamics that govern agent behavior using a short burst of a single system trajectory. Our method identifies agent dynamics through polynomial regression, where we compensate for limited data by incorporating side-information constraints that capture fundamental assumptions or expectations about agent behavior. These constraints are enforced computationally using sum-of-squares optimization, leading to a hierarchy of increasingly better approximations of the true agent dynamics. Extensive experiments demonstrated that our approach, using only 5 samples from a short run of a single trajectory, accurately recovers the true dynamics across various benchmarks, including equilibrium selection and prediction of chaotic systems up to 10 Lyapunov times. These findings suggest that our approach has significant potential to support effective policy and decision-making in strategic multi-agent systems

    Learning

    Get PDF
    Learning and evolution are adaptive or “backward-looking” models of social and biological systems. Learning changes the probability distribution of traits within an individual through direct and vicarious reinforcement, while evolution changes the probability distribution of traits within a population through reproduction and selection. Compared to forward-looking models of rational calculation that identify equilibrium outcomes, adaptive models pose fewer cognitive requirements and reveal both equilibrium and out-of-equilibrium dynamics. However, they are also less general than analytical models and require relatively stable environments. In this chapter, we review the conceptual and practical foundations of several approaches to models of learning that offer powerful tools for modeling social processes. These include the Bush-Mosteller stochastic learning model, the Roth-Erev matching model, feed-forward and attractor neural networks, and belief learning. Evolutionary approaches include replicator dynamics and genetic algorithms. A unifying theme is showing how complex patterns can arise from relatively simple adaptive rules.</p

    Selectionist and Evolutionary Approaches to Brain Function: A Critical Appraisal

    Get PDF
    We consider approaches to brain dynamics and function that have been claimed to be Darwinian. These include Edelman’s theory of neuronal group selection, Changeux’s theory of synaptic selection and selective stabilization of pre-representations, Seung’s Darwinian synapse, Loewenstein’s synaptic melioration, Adam’s selfish synapse, and Calvin’s replicating activity patterns. Except for the last two, the proposed mechanisms are selectionist but not truly Darwinian, because no replicators with information transfer to copies and hereditary variation can be identified in them. All of them fit, however, a generalized selectionist framework conforming to the picture of Price’s covariance formulation, which deliberately was not specific even to selection in biology, and therefore does not imply an algorithmic picture of biological evolution. Bayesian models and reinforcement learning are formally in agreement with selection dynamics. A classification of search algorithms is shown to include Darwinian replicators (evolutionary units with multiplication, heredity, and variability) as the most powerful mechanism for search in a sparsely occupied search space. Examples are given of cases where parallel competitive search with information transfer among the units is more efficient than search without information transfer between units. Finally, we review our recent attempts to construct and analyze simple models of true Darwinian evolutionary units in the brain in terms of connectivity and activity copying of neuronal groups. Although none of the proposed neuronal replicators include miraculous mechanisms, their identification remains a challenge but also a great promise

    ON THE CONVERGENCE OF GRADIENT-LIKE FLOWS WITH NOISY GRADIENT INPUT

    Get PDF
    In view of solving convex optimization problems with noisy gradient input, we analyze the asymptotic behavior of gradient-like flows under stochastic disturbances. Specifically, we focus on the widely studied class of mirror descent schemes for convex programs with compact feasible regions, and we examine the dynamics' convergence and concentration properties in the presence of noise. In the vanishing noise limit, we show that the dynamics converge to the solution set of the underlying problem (a.s.). Otherwise, when the noise is persistent, we show that the dynamics are concentrated around interior solutions in the long run, and they converge to boundary solutions that are sufficiently "sharp". Finally, we show that a suitably rectified variant of the method converges irrespective of the magnitude of the noise (or the structure of the underlying convex program), and we derive an explicit estimate for its rate of convergence.Comment: 36 pages, 5 figures; revised proof structure, added numerical case study in Section
    corecore