8 research outputs found

    MAGMA: Music Aligned Generative Motion Autodecoder

    Full text link
    Mapping music to dance is a challenging problem that requires spatial and temporal coherence along with a continual synchronization with the music's progression. Taking inspiration from large language models, we introduce a 2-step approach for generating dance using a Vector Quantized-Variational Autoencoder (VQ-VAE) to distill motion into primitives and train a Transformer decoder to learn the correct sequencing of these primitives. We also evaluate the importance of music representations by comparing naive music feature extraction using Librosa to deep audio representations generated by state-of-the-art audio compression algorithms. Additionally, we train variations of the motion generator using relative and absolute positional encodings to determine the effect on generated motion quality when generating arbitrarily long sequence lengths. Our proposed approach achieve state-of-the-art results in music-to-motion generation benchmarks and enables the real-time generation of considerably longer motion sequences, the ability to chain multiple motion sequences seamlessly, and easy customization of motion sequences to meet style requirements

    SemanticBoost: Elevating Motion Generation with Augmented Textual Cues

    Full text link
    Current techniques face difficulties in generating motions from intricate semantic descriptions, primarily due to insufficient semantic annotations in datasets and weak contextual understanding. To address these issues, we present SemanticBoost, a novel framework that tackles both challenges simultaneously. Our framework comprises a Semantic Enhancement module and a Context-Attuned Motion Denoiser (CAMD). The Semantic Enhancement module extracts supplementary semantics from motion data, enriching the dataset's textual description and ensuring precise alignment between text and motion data without depending on large language models. On the other hand, the CAMD approach provides an all-encompassing solution for generating high-quality, semantically consistent motion sequences by effectively capturing context information and aligning the generated motion with the given textual descriptions. Distinct from existing methods, our approach can synthesize accurate orientational movements, combined motions based on specific body part descriptions, and motions generated from complex, extended sentences. Our experimental results demonstrate that SemanticBoost, as a diffusion-based method, outperforms auto-regressive-based techniques, achieving cutting-edge performance on the Humanml3D dataset while maintaining realistic and smooth motion generation quality

    Robust Motion In-betweening

    Full text link
    In this work we present a novel, robust transition generation technique that can serve as a new tool for 3D animators, based on adversarial recurrent neural networks. The system synthesizes high-quality motions that use temporally-sparse keyframes as animation constraints. This is reminiscent of the job of in-betweening in traditional animation pipelines, in which an animator draws motion frames between provided keyframes. We first show that a state-of-the-art motion prediction model cannot be easily converted into a robust transition generator when only adding conditioning information about future keyframes. To solve this problem, we then propose two novel additive embedding modifiers that are applied at each timestep to latent representations encoded inside the network's architecture. One modifier is a time-to-arrival embedding that allows variations of the transition length with a single model. The other is a scheduled target noise vector that allows the system to be robust to target distortions and to sample different transitions given fixed keyframes. To qualitatively evaluate our method, we present a custom MotionBuilder plugin that uses our trained model to perform in-betweening in production scenarios. To quantitatively evaluate performance on transitions and generalizations to longer time horizons, we present well-defined in-betweening benchmarks on a subset of the widely used Human3.6M dataset and on LaFAN1, a novel high quality motion capture dataset that is more appropriate for transition generation. We are releasing this new dataset along with this work, with accompanying code for reproducing our baseline results.Comment: Published at SIGGRAPH 202
    corecore