220,503 research outputs found
Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control
It is widely accepted that the complex dynamics characteristic of recurrent
neural circuits contributes in a fundamental manner to brain function. Progress
has been slow in understanding and exploiting the computational power of
recurrent dynamics for two main reasons: nonlinear recurrent networks often
exhibit chaotic behavior and most known learning rules do not work in robust
fashion in recurrent networks. Here we address both these problems by
demonstrating how random recurrent networks (RRN) that initially exhibit
chaotic dynamics can be tuned through a supervised learning rule to generate
locally stable neural patterns of activity that are both complex and robust to
noise. The outcome is a novel neural network regime that exhibits both
transiently stable and chaotic trajectories. We further show that the recurrent
learning rule dramatically increases the ability of RRNs to generate complex
spatiotemporal motor patterns, and accounts for recent experimental data
showing a decrease in neural variability in response to stimulus onset
Restricted Recurrent Neural Networks
Recurrent Neural Network (RNN) and its variations such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU), have become standard building
blocks for learning online data of sequential nature in many research areas,
including natural language processing and speech data analysis. In this paper,
we present a new methodology to significantly reduce the number of parameters
in RNNs while maintaining performance that is comparable or even better than
classical RNNs. The new proposal, referred to as Restricted Recurrent Neural
Network (RRNN), restricts the weight matrices corresponding to the input data
and hidden states at each time step to share a large proportion of parameters.
The new architecture can be regarded as a compression of its classical
counterpart, but it does not require pre-training or sophisticated parameter
fine-tuning, both of which are major issues in most existing compression
techniques. Experiments on natural language modeling show that compared with
its classical counterpart, the restricted recurrent architecture generally
produces comparable results at about 50\% compression rate. In particular, the
Restricted LSTM can outperform classical RNN with even less number of
parameters
Exploring efficient neural architectures for linguistic-acoustic mapping in text-to-speech
Conversion from text to speech relies on the accurate mapping from linguistic to acoustic symbol sequences, for which current practice employs recurrent statistical models such as recurrent neural networks. Despite the good performance of such models (in terms of low distortion in the generated speech), their recursive structure with intermediate affine transformations tends to make them slow to train and to sample from. In this work, we explore two different mechanisms that enhance the operational efficiency of recurrent neural networks, and study their performance–speed trade-off. The first mechanism is based on the quasi-recurrent neural network, where expensive affine transformations are removed from temporal connections and placed only on feed-forward computational directions. The second mechanism includes a module based on the transformer decoder network, designed without recurrent connections but emulating them with attention and positioning codes. Our results show that the proposed decoder networks are competitive in terms of distortion when compared to a recurrent baseline, whilst being significantly faster in terms of CPU and GPU inference time. The best performing model is the one based on the quasi-recurrent mechanism, reaching the same level of naturalness as the recurrent neural network based model with a speedup of 11.2 on CPU and 3.3 on GPU.Peer ReviewedPostprint (published version
- …
