1,370 research outputs found

    Exploiting Emotions via Composite Pretrained Embedding and Ensemble Language Model

    Get PDF
    Decisions in the modern era are based on more than just the available data; they also incorporate feedback from online sources. Processing reviews known as Sentiment analysis (SA) or Emotion analysis. Understanding the user's perspective and routines is crucial now-a-days for multiple reasons. It is used by both businesses and governments to make strategic decisions. Various architectural and vector embedding strategies have been developed for SA processing. Accurate representation of text is crucial for automatic SA. Due to the large number of languages spoken and written,  polysemy and syntactic or semantic issues were common. To get around these problems, we developed effective composite embedding (ECE), a method that combines the advantages of vector embedding techniques that are either context-independent (like glove & fasttext) or context-aware (like  XLNet) to effectively represent the features needed for processing.  To improve the performace towards emotion or  sentiment we proposed stacked ensemble model of deep lanugae models.ECE with Ensembled model is evaluated on balanced  dataset to prove that it is a reliable embedding technique and a generalised model for SA.In order to evaluate ECE, cutting-edge ML and Deep net language models are deployed and comapared. The model is evaluated using benchmark datset such as  MR, Kindle along with realtime tweet dataset of user complaints . LIME is used to verify the model's predictions and to provide statistical results for sentence.The model with ECE embedding provides state-of-art results with real time dataset as well

    Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network

    Full text link
    Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67\% accuracy and 96.02\% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.Comment: 9 pages, 4 figures, Accepted by Scientific Report
    • …
    corecore