2 research outputs found

    ๋‹จ์ผ ์ด๋ฏธ์ง€ ๋‚ด ๋น„์ œ๊ฑฐ๋ฅผ ์œ„ํ•œ ๋‹ค์ค‘์Šค์ผ€์ผ ์—ฐ๊ฒฐ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๊ณ„์‚ฐ๊ณผํ•™์ „๊ณต, 2021.8. ๊ฐ•๋ช…์ฃผ.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ ๊ฒฝ๋ง์—์„œ ์ƒ์„ฑ๋œ ๋ชจ๋“  ์Šค์ผ€์ผ์˜ ํŠน์ง•๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€์˜ ์„ธ๋ถ€ ์ •๋ณด๊นŒ์ง€ ๋ณต๊ตฌํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค์ค‘์Šค์ผ€์ผ ์—ฐ๊ฒฐ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(MC-CNN)์„ ์ œ์•ˆํ•œ๋‹ค. ์„ธ๋ถ€ ์ •๋ณด ๋ณต๊ตฌ๋ฅผ ์œ„ํ•œ MC-CNN์˜ ์ฒซ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ๋‹ค์ค‘์Šค์ผ€์ผ ์—ฐ๊ฒฐ๋กœ, ์ธ์ฝ”๋” ๋ถ€๋ถ„์˜ ๋ชจ๋“  ์Šค์ผ€์ผ ํŠน์ง•๋“ค์„ ๋””์ฝ”๋”์— ์—ฐ๊ฒฐํ•˜์—ฌ ๊ฐ€๋Šฅํ•œ ๋งŽ์€ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€๋ฅผ ๋ณต๊ตฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋‹ค์ค‘์Šค์ผ€์ผ ์—ฐ๊ฒฐ์€ ๋‹จ์ˆœํžˆ ๊ฐ ์Šค์ผ€์ผ์˜ ํŠน์ง•์„ ํ•ฉ์น˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ์–ด๋Š ์Šค์ผ€์ผ์˜ ํŠน์ง•์ด ํ˜„์žฌ ๊ณผ์ •์—์„œ ์ค‘์š”ํ•œ์ง€ ๋ฐฐ์šธ ์ˆ˜ ์žˆ๋„๋ก ์ฑ„๋„ ์–ดํ…์…˜์„ ๊ณ ๋ คํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ํ•ต์‹ฌ์€ ์™€์ด๋“œ ๋…ผ๋กœ์ปฌ (WRNL) ๋ธ”๋ก์ด๋‹ค. ์šฐ๋ฆฌ๋Š” ๋„“์€ ์ง์‚ฌ๊ฐํ˜•์œผ๋กœ ์ด๋ฏธ์ง€๋ฅผ ๋‚˜๋ˆŒ ๋•Œ ๊ฐ ํŒจ์น˜๊ฐ€ ๊ฐ€์žฅ ๊ณ ๋ฅธ ๋ถ„ํฌ๋ฅผ ๊ฐ€์ง„๋‹ค๋Š” ๊ฒƒ์„ ์•Œ์•„๋ƒˆ๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ WRNL์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ํ•ฉ์„ฑ ๋ฐ ์‹ค์ œ ๋น„ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ์ง„ํ–‰๋œ ๋งŽ์€ ์‹คํ—˜ ๊ฒฐ๊ณผ๋“ค์„ ํ†ตํ•ด MC-CNN์ด ์ •๋Ÿ‰์ ์œผ๋กœ ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์„ ๋Šฅ๊ฐ€ํ•˜๊ณ  ์ •์„ฑ์ ์œผ๋กœ๋„ ๋งŽ์€ ๊ฐœ์„ ์ด ์ด๋ฃจ์–ด์กŒ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.In this thesis, we propose an end-to-end multi-scale connected convolutional neural network (MC-CNN) that leverages all scale features to remove rain streaks while recovering detailed information on images. The first key point for recovering details is a multi-scale connection, which connects all scale features of the encoder part to the decoder part to restore the image with as much information as possible. Multi-scale connection considers channel-wise attention to learn which scale features are important in the current process, rather than simply combining the features of each scale. The second key point is a wide regional non-local (WRNL) block. We find that dividing images into wide rectangular patches makes each patch have a more even distribution than the existing method and based on this, we propose a WRNL block. Experimental results on synthetic and real-world datasets demonstrate that MC-CNN quantitatively outperforms existing state-of-the-art models and qualitatively achieves several improvements.1 Introduction 1 2 Related Work 4 3 Proposed Network 6 3.1 Multi-scale Connection 8 3.2 Wide Regional Non-Local Block 9 3.2.1 Analysis 10 3.3 Discrete Wavelet Transform 12 3.4 Data Augmentation 12 3.5 Loss Function 13 4 Experiments 14 4.1 Datasets and Evaluation Metrics 14 4.2 Experiment Details 15 4.3 Results 16 4.3.1 Synthetic Datasets 16 4.3.2 Real-world Datasets 18 4.4 Ablation Study 20 4.4.1 Multi-scale connection 20 4.4.2 Region types of non-Local block 21 5 Conclusion 23 Abstract (In Korean) 32์„

    Recurrent Attention Dense Network for Single Image De-Raining

    No full text
    corecore