20 research outputs found

    Initial Explorations on Regularizing the SCRN Model

    Get PDF
    Recurrent neural networks are very powerful sequence models which are used for language modeling as well. Under correct regularization such as naive dropout these models are able to achieve substantial improvement in their performance. We regularize the Structurally Constrained Recurrent Network (SCRN) model and show that despite its simplicity it can achieve the performance comparable to the ubiquitous LSTM model in language modeling task while being smaller in size and up to 2x faster to train. Further analysis shows that regularizing both context and hidden states of the SCRN is crucial

    Simple Recurrent Units for Highly Parallelizable Recurrence

    Full text link
    Common recurrent neural architectures scale poorly due to the intrinsic difficulty in parallelizing their state computations. In this work, we propose the Simple Recurrent Unit (SRU), a light recurrent unit that balances model capacity and scalability. SRU is designed to provide expressive recurrence, enable highly parallelized implementation, and comes with careful initialization to facilitate training of deep models. We demonstrate the effectiveness of SRU on multiple NLP tasks. SRU achieves 5--9x speed-up over cuDNN-optimized LSTM on classification and question answering datasets, and delivers stronger results than LSTM and convolutional models. We also obtain an average of 0.7 BLEU improvement over the Transformer model on translation by incorporating SRU into the architecture.Comment: EMNL

    Pyramidal Recurrent Unit for Language Modeling

    Full text link
    LSTMs are powerful tools for modeling contextual information, as evidenced by their success at the task of language modeling. However, modeling contexts in very high dimensional space can lead to poor generalizability. We introduce the Pyramidal Recurrent Unit (PRU), which enables learning representations in high dimensional space with more generalization power and fewer parameters. PRUs replace the linear transformation in LSTMs with more sophisticated interactions including pyramidal and grouped linear transformations. This architecture gives strong results on word-level language modeling while reducing the number of parameters significantly. In particular, PRU improves the perplexity of a recent state-of-the-art language model Merity et al. (2018) by up to 1.3 points while learning 15-20% fewer parameters. For similar number of model parameters, PRU outperforms all previous RNN models that exploit different gating mechanisms and transformations. We provide a detailed examination of the PRU and its behavior on the language modeling tasks. Our code is open-source and available at https://sacmehta.github.io/PRU/Comment: Accepted as a long paper in EMNLP 201
    corecore