1 research outputs found

    Rectilinear path problems in restricted memory setup

    No full text
    We study the rectilinear path problem in the presence of disjoint axis parallel rectangular obstacles in the in-place and read-only setup. The input to the problem is a set R of n axis-parallel rectangular obstacles in IR2. We need to preprocess the members in R such that the following query can be answered efficiently. Path-Query(p, q): Given a pair of points p and q, report an axis-parallel path from p to q avoiding the obstacles in R. In the read-only setup, we consider a restricted version of the Path- Query(p, q) problem, where the objective is to check the existence of an xy-monotone path between the given pair of points p and q avoiding the obstacles, and report it if such a path exists. Given O(s) extra space, the problem can be solved in O(n2/s + n log s + Ms log n) time, where Ms is the time complexity for computing the median of n elements in read-only setup using O(s) extra space. In the in-place setup, we preprocess the input rectangles in a data structure such that for any pair of query points p and q, the problem Path-Query(p, q) can be solved efficiently. The time complexities for the preprocessing and query are O(n log n) and O(n3/4 + χ) respectively, where χ is the number of links (bends) in the path. The extra space requirement for both preprocessing and query answering are O(1). We also show that among a set of unit square obstacles, there always exists a path of O(log n) links between a pair of query points. Here, we use a different in-place data structure with same preprocessing time complexity to answer the query in O(log n) time
    corecore