69,532 research outputs found
Thermal rectifier from deformed carbon nanohorns
We study thermal rectification in single-walled carbon nanohorns (SWNHs) by
using non-equilibrium molecular dynamics (MD) method. It is found that the
horns with the bigger top angles show larger asymmetric heat transport due to
the larger structural gradient distribution. This kind of gradient behavior can
be further adjusted by applying external strain on the SWNHs. After being
carefully elongated along the axial direction, the thermal rectification in the
elongated SWNHs can become more obvious than that in undeformed ones. The
maximum rectification efficiency of SWNHs is much bigger than that of carbon
nanotube intramolecular junctions.Comment: 3 figure
Current rectification by asymmetric molecules: An ab initio study
We study current rectification effect in an asymmetric molecule
HOOC-CH-(CH) sandwiched between two Aluminum electrodes using
an {\sl ab initio} nonequilibrium Green function method. The conductance of the
system decreases exponentially with the increasing number of CH. The
phenomenon of current rectification is observed such that a very small current
appears at negative bias and a sharp negative differential resistance at a
critical positive bias when . The rectification effect arises from the
asymmetric structure of the molecule and the molecule-electrode couplings. A
significant rectification ratio of 38 can be achieved when .Comment: to appear in J. Chem. Phy
Projective rectification from the fundamental matrix
This paper describes a direct, self-contained method for planar image rectification of stereo pairs. The method is based solely on an examination of the Fundamental matrix, where an improved method is given for the derivation of two projective transformations that horizontally align all the epipolar projections. A novel approach is proposed to uniquely optimise each transform in order to minimise perspective distortions. This ensures the rectified images resemble the original images as closely as possible. Detailed results show that the rectification precision exactly matches the estimation error of the Fundamental matrix. In tests the remaining perspective distortion offers on average less than one percent viewpoint distortion. Both these factors offer superior robustness and performance compared with existing techniques
Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations
We study heat conduction in (n, 0)/(2n, 0) intramolecular junctions by using
molecular dynamics method. It is found that the heat conduction is asymmetric,
namely, heat transports preferably in one direction. This phenomenon is also
called thermal rectification. The rectification is weakly dependent on the
detailed structure of connection part, but is strongly dependent on the
temperature gradient. We also study the effect of the tube radius and
intramolecular junction length on the rectification. Our study shows that the
tensile stress can increase rectification. The physical mechanism of the
rectification is explained
Radially-Distorted Conjugate Translations
This paper introduces the first minimal solvers that jointly solve for
affine-rectification and radial lens distortion from coplanar repeated
patterns. Even with imagery from moderately distorted lenses, plane
rectification using the pinhole camera model is inaccurate or invalid. The
proposed solvers incorporate lens distortion into the camera model and extend
accurate rectification to wide-angle imagery, which is now common from consumer
cameras. The solvers are derived from constraints induced by the conjugate
translations of an imaged scene plane, which are integrated with the division
model for radial lens distortion. The hidden-variable trick with ideal
saturation is used to reformulate the constraints so that the solvers generated
by the Grobner-basis method are stable, small and fast.
Rectification and lens distortion are recovered from either one conjugately
translated affine-covariant feature or two independently translated
similarity-covariant features. The proposed solvers are used in a \RANSAC-based
estimator, which gives accurate rectifications after few iterations. The
proposed solvers are evaluated against the state-of-the-art and demonstrate
significantly better rectifications on noisy measurements. Qualitative results
on diverse imagery demonstrate high-accuracy undistortions and rectifications.
The source code is publicly available at https://github.com/prittjam/repeats
Rectification from Radially-Distorted Scales
This paper introduces the first minimal solvers that jointly estimate lens
distortion and affine rectification from repetitions of rigidly transformed
coplanar local features. The proposed solvers incorporate lens distortion into
the camera model and extend accurate rectification to wide-angle images that
contain nearly any type of coplanar repeated content. We demonstrate a
principled approach to generating stable minimal solvers by the Grobner basis
method, which is accomplished by sampling feasible monomial bases to maximize
numerical stability. Synthetic and real-image experiments confirm that the
solvers give accurate rectifications from noisy measurements when used in a
RANSAC-based estimator. The proposed solvers demonstrate superior robustness to
noise compared to the state-of-the-art. The solvers work on scenes without
straight lines and, in general, relax the strong assumptions on scene content
made by the state-of-the-art. Accurate rectifications on imagery that was taken
with narrow focal length to near fish-eye lenses demonstrate the wide
applicability of the proposed method. The method is fully automated, and the
code is publicly available at https://github.com/prittjam/repeats.Comment: pre-prin
- …
